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Abstract

In this thesis we modelled interactions between metal probe and quantum Hall liquid.
The setup geometries were similar to those met in scanning capacitance microscopy
experiments carried out by Ashoori’s group [1]. The main interest was to explore
the 2DEG charge densities for a different system geometries, magnetic field applied,
and tip voltages. We modelled quantum bubble formation under the metal probe,
incompressible strip formation beneath the edge of the metal gate, and 2DEG density
profile under the influence of donors in magnetic field. In order to model complex
geometry systems, but also optimize running times and memory allocation we de-
veloped two electrostatic simulators one for cylindrically symmetric and second for
arbitrary 3D geometries. Our electrostatic solver was based on successive over re-
laxation algorithm, but it was optimized for better stability and faster convergence
times.
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Chapter 1

Introduction

In this chapter we will give a brief review on scanning capacitance microscopy experi-

ments. In addition we will introduce concept of two dimensional electron gas (2DEG)

systems and their architecture. Later we will review Quantum Hall effects that play

important role in physics of 2DEG. Finally in this chapter we will introduce scanning

capacitance experiment geometry setup that we will explore in this paper.

1.1 Scanning Capacitance Experiments

The development of the scanning probe microscopy and electric field sensing tech-

niques led to the discovery of the scanning capacitance microscopy. In the scanning

capacitance experiments sharp metal tip (probe) is placed in close proximity to the

surface of the sample. Due to electrostatic interaction between probe and sample we

are able to sense the charges buried in the sample ([2],[3], and [4]). In other words

charge accumulated in the sample, couples with the charge on the probe. Conse-

quently capacitance of the system (probe-sample) is dependent of charge distribution

on the sample (beneath the tip). So indirectly by measuring the capacitance of the

system we are able to map the charge density along the sample. More amazingly

this remote sensing technique allow us to measure charges buried beneath the sample

surface. This technique helped us explore quantum mechanics of confined systems,

and furthermore facilitate development of future generation of nano-electronic devices
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Figure 1-1: Schematic of the scanning capacitance microscopy experiment. The
charges on the probe and 2D layer couple dictating the system capacitance, which
allow us image charge distribution in the 2D layer [1].

[1].The actual setup of scanning capacitance microscopy is shown on the Fig. 1-1.

1.2 Two Dimensional Electron Gas (2DEG)

In this chapter we will give a brief review on the two dimensional electron gas systems.

2DEG system is heterostructure in which electrons are confined in a plane. Het-

erostructures are semiconductors assembled of different materials. The heterostruc-

ture modelled in this paper was GaAs − AlxGax−1As. The common production

technique is Molecular-beam Epitaxy where different semiconductor layers are grown

on top of each other. Due to different properties like conduction and valence of dif-

ferent semiconductor materials, as we grow semiconductor layers we alter the valence

or conductance of the heterostructure profile along vertical axis. Usually the lower

valence material is an n-doped semiconductor. The excess electronic density created

by doping flows toward the region of higher valence. The high-valence material acts

like sink for the excess electrons of n-doped semiconductor. While crossing to the low

energy region electrons lose extra energy and stay trapped in potential well. So at

the end of the day we will end up with electrons trapped in potential well, that is the

high valence layer. By narrowing the width of potential well we can restrict motion

of electrons in z-axis, producing 2DEG [5].

The heterostructure modelled in this paper is shown on Fig. 1-2a. The system
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Figure 1-2: (a) The heterostructure geometry modelled in this paper, 2DEG is on
the interface of undoped-AlGaAs and GaAs, and is separated by 20nm from excess
electron region of Si-doped AlGaAs; (b) Conductance profile of the heterostructure
used in the simulation [6].

was grown on the GaAs substrate, on top of it we have layer of undoped AlGaAs,

followed by Si-doped AlGaAs, and finally cap layer was GaAs. This arrangement

of the layers along vertical axis produces conduction band shown on Fig. 1-2b. The

excess electrons from the Si-doped AlGaAs, flow into the region of the interface

GaAs/undoped-AlGaAs where they stay trapped in the narrow triangular quantum

well, producing 2DEG.

1.3 Quantum Hall Effect

The classical Hall effect was discovered by Dr. Edwin Hall in 1879. If magnetic

field is applied perpendicularly to the current flow in semiconductor (or metal) the
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voltage difference is build up along the direction perpendicular to the both current

flow and magnetic field (direction k̂). The Hall effect is caused by discrete nature

of current flow. Current is composed of electrons drafting in the current direction.

Single electron experiences magnetic field force along k̂ and therefore some electrons

end up on the edges of the sample inducing voltage difference. Using the Hall effect

one can measure charge carrier density of the sample by measuring Hall conductance.

The conductance and charge density are connected by following formulae: σ = nqc
B

,

where σ - is Hall conductance, B is the magnetic field strength, n is the charge carrier

density, q is the charge of unit carrier,and c is the speed of light ).

In the 1982 Quantum Hall Effect was discovered. It was observed that in 2D

systems of semiconductors and metals , for low temperatures (order of 350mK) and

high magnetic fields (around 1T and more), Hall conductance takes quantized values

(σ = νe2

h
). The integer ν represents the Landau Level filling factor. If we express

the charge density in function of ν and B we get, (n = νeB
hc

. As we can see charge

density is directly proportional to the Landau Level filling factor and strength of the

magnetic field [7]. In this paper we will often refer to the magnetic field in terms of

ν, and this is because ν has more intuitive meaning.

In our experimental setup we have 2D electron gas (2DEG) buried beneath semi-

conductor surface, on a low temperatures and high magnetic filed. The density profile

of 2DEG will be quantized according to the Quantum Hall Effect. In our experiment

we will explore properties of the Quantum Hall Liquid met in scanning capacitance

microscopy experiments close to the integer filling factors.

1.4 Electrostatics of the complicated Geometry

The goal of this thesis is to build simulator capable of modelling complicated elec-

trostatic geometries as one usually meets in scanning probe microscopy experiments

[8],[2], and [3]. The geometry of the probe-sample model is shown on Fig. 4-1 and

1-1. The probe is in close proximity to the surface of the sample (20nm) , while the

2DEG is buried beneath GaAs (90nm beneath sample surface). Top and bottom of
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our model are defined as top and bottom metal gates, also boundary conditions were

either metal boundaries or normal boundary conditions. Note that the setup on the

picture is cylindrically symmetric along the Z axis. This geometry is fairly compli-

cated and it’s unsolvable analytically. To solve this and similar problems, often met

in physics of 2DEG and Scanning Capacitance Spectroscopy one has to use numerical

approach.

Therefore to solve electrostatic problems of 2DEG we had to develop electrostatic

simulator. The simulator we developed is based on relaxation method and can model

systems that are composed of vacuum, dielectric, metal, fixed charges, and semicon-

ductor (of any reasonable density profile). Since the simulator is very flexible if would

be easy to implement any additional material, if necessary. We solved electrostatics of

the system for the potential distribution, from which all the other fields (electrostatic

field, charge distribution) could be calculated. The basic algorithm of the relaxation

method is following: entire system is represented by discrete material matrix, at each

iteration every cell of the matrix is relaxed (potential is updated with better guess),

and as we relax system finitely many times it should converge to the solution. One

may ask how do we relax individual cell of the potential matrix? By using Gauss

law applied to the discrete space we are able to calculate potential of the cell being

relaxed in function of it’s neighbors and other known parameters ( dielectric constant,

static charge or charge density ), exact relaxation formulae is derived in next chapter.

In general things get a bit more complicated as we optimize the algorithm, and

ensure convergence, but the idea of relaxation method is very simple. For the purpose

of time/geomtry optimization we build two different electrostatic simulators , one was

optimized for cylindrically symmetric systems and second one was was applicable

arbitrary 3D system. the governing equations and algorithm of both simulators will

be described in detail in the next chapter.
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Figure 1-3: The geometry of the scanning probe above 2DEG.
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Chapter 2

Simulation Details

As it was mentioned before, due to complexity of the system geometry we are unable

to compute analytical solution, and therefore we had to solve it numerically. For this

purpose we developed two electro-static simulators: one optimized for the cylindrically

symmetric geometries and the other one for the arbitrary three dimensional systems.

Both electro-static solvers were based on Successive Over Relaxation (SOR) technique

[9]. The idea of Relaxation methods in general is to relax system for a number of

iterations until it reach solution. In this chapter we will derive relaxation update

equation from Gauss’s law, for cylindrically symmetric systems as well as for regular

3D systems. In addition we will discuss convergence time of the simulation as well as

convergence test criteria.

2.1 Poisson’s Equation For Solving Electrostatics

Any electrostatic solver is actually Poisson’s equation solver for a given geometry and

initial conditions. The simulator was based on Poison equation solver. The Poisson’s

equation is given by Eq. 2.1.

∇2u(~x) =
ρ(~x)

εr(~x)ε0

, Poisson’s equation. (2.1)

Where u is the potential,ρ is the charge density, and εr is the relative dielectric
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constat field.The equivalent to the Poisson’s equation is the Gauss’s law, which states

that: ”total flux through any closed surface is equal to the sum of all charges inside

divided by dielectric constant.This can be written in the following form:

Φs =
∫

S

~Ed~s =
ΣS q

εr(~x)ε0

, Gauss’s equation. (2.2)

Where Φs is total flux through closed surface S, ~E is the electric field vector,

~s is the surface vector and, ΣS q is sum of all charges inside the S. We will derive

relaxation equation from the Gauss’s law because it’s more intuitive, but the equations

we will get are the equivalent to those derived using Poisons equation. Note that in

Poisson’s equation ρ(~x) is function of the position only. Since simulator supports

semiconductor materials that actually have density function dependent on potential

ρ(~x, u) the problem gets nonlinear. In next chapter we will introduce the charge

density function profiles of insulator, metals, and semiconductors.

2.2 Charge Density

Depending on the material we have different charge density functions. So for example

in metal we have zero gradient of potential field which means that electrons inside the

metal will rearrange their positions preserving the zero electric filed. In other words

the zero electric field will maintain the constant potential of the metal cells. Opposite

of metals are insulators (vacuum, dielectric). The charges are trapped in insulators,

therefore the charge density in insulators remains constant at all times. Consequently

the potential will adjust to the insulator so it’s in agreement with Poisson’s law. The

charge density of the insulator in function of the potential is horizontal line since

amount of charge in insulator is constant. The semiconductor are in between metals

and insulators. In semiconductors the potential adjusts to to the charge density,

but also charge density is now dependent on potential. In the Fig. 2-1 we can see

semiconductor in function of the potential (dashed line). In absence of the magnetic

field charge density is linearly decreasing function of the potential, but as we apply
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large magnetic field the Quantum Hall take effect important. In sufficiently strong

magnetic fields and low temperatures charge density in function of potential looks

like the multiple step function (2-1). Since the step function is infinitely sharp,

the first derivative of the charge density is delta function. However in real life the

delta function is Lorentzian with finite width. For the purpose of simulating the

semiconductor in magnetic field we approximate Lorentzian to the constant with a

finite width. This assumption helped us improve the stability of the code with no lose

of generality. This is because the shape of step jump, as long as it’s reasonable, does

not play crucial effect on 2DEG charge profiles. Finally the charge density function

we used in simulation is shown on the Fig. 2-1. Note that depending on material we

could have depletion density ρ0 which represented the maximal electron depletion in

the material. For the linear charge density dependence the slope corresponds to the

density of states (DOS = ∂ρ
∂u

= 1
ρ

(
∂n
∂E

)
). For the charge density profiles in magnetic

fields the slope of the ”step” was ten times greater than the DOS. And finally to

conclude:

Metal: u = const ⇒ ρ(u) = adjusts to anything.

Insulator: ρ(u) = const ⇒ u = adjusts to anything.

Semiconductor: ρ(u) = ρ0 − u DOS, (B = 0) or the step function (B 6= 0).

2.3 Deriving the Relaxation Equation

In this chapter we will derive relaxation equation. Depending on the type of the

material the relaxation equation applied to the individual grid cell is different. The

metal cells were held on constant potential (defined by the initial conditions). The

relaxation of the dielectric, free space and semiconductor cells is a more complicated

and can be derived using Gauss’s law. In this chapter we will derive relaxation equa-

tion for the non-uniform grid spacing for both cylindrically symmetric and arbitrary

three dimensional systems. The boundaries in our simulation were defined by normal
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Figure 2-1: Charge density in semiconductor in function of the voltage.
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boundary conditions (NBC) or fixed potentials (metal boundaries). Normal bound-

ary conditions impose zero potential gradient in chosen direction, so for example if

we have Material cell M [i][j][ZMAX] = NormalBoundaryConditions it means that

in each relaxation step we set it’s potential to the potential of neighbor cell in chosen

direction. In other words, U [i][j][ZMAX] = U [i][j][ZMAX − 1], will assure zero

electric field along ẑ axes. Note that convergence time of the simulation is correlated

to the type of boundary conditions we use. So for example simulation with metal

boundaries converge much faster than the simulation where we have normal bound-

ary conditions. Intuitively this is because metal boundary conditions are source of the

exact potential therefore they emit information while NBC are patched by neighbors

potential.

While deriving the relaxation equation we have to account for the charge induced

by semiconductor which is defined by charge density function , ρ = f(u). Let’s call

the initial value of the potential u = U [i][j][k] and improved potential (the potential

after single relaxation step) u∗ = U∗[i][j][k]. In order to derive explicit relaxation

equation, the charge density induced by potential in semiconductor is approximated

to the first order Taylor expansion(Eq. 2.3).

ρ(u∗) = ρ(u) + ρ,(u)(u∗ − u) (2.3)

.

Using Taylor expansion we can derive explicate relaxation equation, but still main-

tain good approximation for the ρ reducing the numerical instability.As we will see

this approximation is good enough and simulation is stable for a reasonable ρ(u) func-

tions. For the both cylindrically symmetric and 3D simulators system was described

by material matrix M , relative dielectric constant matrix Erel, potential matrix U

and the matrix of the residual charges F .
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Figure 2-2: Schematics representation of the point relaxed in the three dimensional
grid and it’s nearest neighbors.

2.3.1 3D relaxation equation

In this section we will derive relaxation equation of the arbitrary 3D geometry. In this

derivation we will assume that system has non uniform grid spacing given by X, Y and

Z matrix, where spacial coordinate of (i, j, k) is given by (X[i][j][k],Y[i][j][k],Z[i][j][k]).

All ofthe space metreces are monotonically increasing functions of indexes i, j and k.

However this grid spacing has the following constrain:

∀(i1, j1, k1), (i2, j2, k2)


i1 = i2 ⇒ X[i1][j1][k1] = X[i2][j2][k2];

j1 = j2 ⇒ Y [i1][j1][k1] = Y [i2][j2][k2];

k1 = k2 ⇒ Z[i1][j1][k1] = Z[i2][j2][k2].

(2.4)

This grid spacing setup allow us to derive simple relaxation equation and still be

able to simulate relatively big systems that have interesting features in the areas that

are few orders of magnitude smaller than the total system size. Of course one might

think that we can always use brutal force approach and make very dense uniform

spacing , but for the practical purposes this is useless. For example to simulate

system that is on the order of magnitude of 1mm and has interesting features (eg.
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probe -sample distance) on the order of magnitude of 1µm we need to make grid with

at least few thousand cells per dimension. This would mean that at each iteration we

would need to relax order of hundred billion cells which is extremely time consuming.

The schematics representation of the point and it’s nearest neighbors is shown on

Fig. 2-2. Notation that we use is following, the subindex represents the direction in

which we deviate from currently relaxed point so if we relax point U [i][j][k] we will

call it u , and it’s nearest neighbors in x, y and z direction instead of U [i − 1][j][k],

U [i+1][j][k], U [i][j−1][k], U [i][j+1][k], U [i][j][k−1], and U [i][j][k+1] we call simply

ui−1, ui+1, uj−1, uj+1, uk−1 and uk+1. Analogously notation we used for the X, Y , Z,

and Erel matrices. Also to make equations less confusing we used following notation

∆p1 =
1

2
(p− pl−1), ∆p2 =

1

2
(pl+1 − p), ∆p = ∆p1 + ∆p2.

Where p ε{x, y, z}, and l ε{i, j, k}.

For relative dielectric constant we use following notation:

εl±1/2 =
1

2
(εl±1 + ε), lε{i, j, k}.

The equation is derived from Gauss law’s Eq. 2.5, and flux equation applied on a

discrete 3D matrix (Fig. 2-2). The flux through the single face is equal to the average

electric filed perpendicular to it multiplied by it’s surface (Φ = εrelĒ∆S). Following

this we get that flux through faces along x̂, ŷ , and ẑ are given by Eq. 2.5 - 2.8.

Φ =
Q

ε0

, Gauss’s Law; (2.5)

Φx = εi+1/2

(
ui+1 − u

∆x2

)
∆z∆y + εi−1/2

(
ui−1 − u

∆x1

)
∆z∆y; (2.6)

Φy = εj+1/2

(
uj+1 − u

∆y2

)
∆x∆z + εj−1/2

(
uj−1 − u

∆y1

)
∆x∆z; (2.7)

Φz = εk+1/2

(
uk+1 − u

∆z2

)
∆x∆y + εk−1/2

(
uk−1 − u

∆z1

)
∆x∆y. (2.8)

For the cube shown on the Fig. 2-2 we see that total flux out of the cube is equal
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to the sum of the fluxes in x, y , and z direction(Φ = Φx + Φy + Φz). Using this and

Eq. 2.5 - 2.8 we get:

Q

ε0∆x∆y∆z
=

−u

(
1

∆x

(
εi−1/2

∆x1

+
εi+1/2

∆x2

)
+

1

∆y

(
εj−1/2

∆y1

+
εj+1/2

∆y2

)
+

1

∆z

(
εk−1/2

∆z1

+
εk+1/2

∆z2

))

+
1

∆x

(
ui+1εi+1/2

∆x2

+
ui−1εi−1/2

∆x1

)
+

1

∆y

(
uj+1εj+1/2

∆y2

+
uj−1εj−1/2

∆y1

)

+
1

∆z

(
uk+1εk+1/2

∆z2

+
uk−1εk−1/2

∆z1

)
(2.9)

If the point relaxed is the fixed charge point in the dielectric we get the final

equation:

A =
1

∆x

(
ui+1εi+1/2

∆x2

+
ui−1εi−1/2

∆x1

)
+

1

∆y

(
uj+1εj+1/2

∆y2

+
uj−1εj−1/2

∆y1

)

+
1

∆z

(
uk+1εk+1/2

∆z2

+
uk−1εk−1/2

∆z1

)
;

B =
1

∆x

(
εi−1/2

∆x1

+
εi+1/2

∆x2

)
+

1

∆y

(
εj−1/2

∆y1

+
εj+1/2

∆y2

)
+

1

∆z

(
εk−1/2

∆z1

+
εk+1/2

∆z2

)
;

u∗ =
− Q

ε0∆x∆y∆z
+ A

B
.(2.10)

The Eq. 2.13 seem to be fairly complicated since it’s very general, but one of the

simplification that follow for the uniform grid (∆x1 = ∆x2 = ∆y1 = ∆y2 = ∆z1 =

∆z2 = a) and uniform dielectric constants, ε lead to:

u∗ = − Q

3aεrε0

+
1

6
(ui+1 + ui−1 + uj+1 + uj−1 + uk+1 + uk−1) (2.11)

Which intuitively makes sense since for the free space we get that of a single

20



grid point is the average of it’s nearest neighbors. Derivation for the semiconductor

cells is analogous to dielectric derivation except that now we have Q dependent on

current potential of the cell relaxed. So using Eq. 2.9 and 2.3 , together with notation

introduced for A and B we get:

Q = ∆x∆y∆z ρ(u∗) = ∆x∆y∆z (ρ(u) + ρ
′
(u)(u∗ − u)) (2.12)

now using this with Eq. ⇒
1

ε0

(ρ(u) + ρ
′
(u)(u∗ − u)) = −u∗B + A (2.13)

and finally we get

u∗ =
A− ρ(u)

ε0
+ ρ

′
(u)
ε0

u

B + ρ′ (u)
ε0

(2.14)

The Eq. 2.14 is the most general relaxation and can be applied to any material

(insulator, conductor, and semiconductor) for a properly chosen function ρ.

2.3.2 2D cylindrically symmetric

One the problems we were interested to solve, was to find the dependence of 2DEG

density profile, and system capacitance on, tip-sample separation. This system is

cylindrically symmetric and the relaxation equation derived in previous section could

be reduced to the two dimensional equation. In 2D Cylindrical Simulator we define

spacing matrices Z and R. R matrix represents matrix of radial distance from the

coordinate beginning which is in i=0, j=0, similarly Z matrix represents the height

matrix. Analogously to the 3D case we have:

∀(i1, j1), (i2, j2)

 i1 = i2 ⇒ R[i1][j1] = R[i2][j2];

j1 = j2 ⇒ Z[i1][j1] = Z[i2][j2];
(2.15)

The schematic representation of the grid geometry used is shown on the Fig. 2-3.

Due to radial symmetry we are able to reduce problem to two dimensions. So let

apply Gauss’s law to the grid cell shown on Fig. 2-3, with an arbitrary angular width
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Figure 2-3: Schematics representation of the point relaxed in 2D cylindrically sym-
metric grid and it’s nearest neighbors. a) the view from the side, b) top view c) side
view representation of the grid

θ. The flux through the face of the grid cell can be defined as : Φ = εrel ∆S Ē , (εrel

- relative dielectric constant on the face, ∆S - the face surface, Ē - the mean electric

field incident to the face. Then the fluxes out of the grid cell along r̂,θ̂ , and ẑ are

given by:

Φr = εi−1/2 ∆z θri−1/2

(
ui−1 − u

∆r1

)
+ εi+1/2 ∆z θri+1/2

(
ui+1 − u

∆r2

)
, (2.16)

Φθ = 0, (due to cylindrical symmetry), (2.17)

Φz = εj−1/2
θ

2π
(r2

i+1/2 − r2
i−1/2)(

uj+1 − u

∆z1

) + (2.18)

εj+1/2
θ

2π
(r2

i+1/2 − r2
i−1/2)(

uj−1 − u

∆z2

).

The total flux out of the cell is equal to the sum of fluxes along r̂,θ̂ , and ẑ. Also

according to Gauss’s theorem the flux is proportional to the charge enclosed by cell’s

surface. Since we are dealing with cell of arbitrary θ, we will not define cell charge but

rather cell’s charge density. Therefore Q = θ
2π

∆z (r2
i+1/2− r2

i−1/2)ρ. In our derivation

we will use analogous notation introduced subsection 2.3.1. Using charge definition

with Gauss’s law and flux definitions (plus dividing both sides of Gauss’s law with θ)

we get:
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1

2πε0

∆z (r2
i+1/2 − r2

i−1/2) ρ =

−u

(
εi+1/2 ∆z ri+1/2

∆r2

+
εi−1/2 ∆z ri−1/2

∆r1

+ (
εk−1/2

∆z1

+
εk+1/2

∆z2

)
1

2π
(r2

i+1/2 − r2
i−1/2)

)

+εi−1/2 ∆z ri−1/2
ui−1

∆r1

+ εi+1/2 ∆z ri+1/2
ui+1

∆r2

+
εj−1/2

2π
(r2

i+1/2 − r2
i−1/2)

uj+1

∆z1

+
εj+1/2

2π
(r2

i+1/2 − r2
i−1/2)

uj−1

∆z2

.(2.19)

If we define:

C =
εi+1/2 ∆z ri+1/2

∆r2

+
εi−1/2 ∆z ri−1/2

∆r1

+(
εk−1/2

∆z1

+
εk+1/2

∆z2

)
1

2π
(r2

i+1/2 − r2
i−1/2);

D = εi−1/2 ∆z ri−1/2
ui−1

∆r1

+ εi+1/2 ∆z ri+1/2
ui+1

∆r2

+
εj−1/2

2π
(r2

i+1/2 − r2
i−1/2)

uj+1

∆z1

+
εj+1/2

2π
(r2

i+1/2 − r2
i−1/2)

uj−1

∆z2

. (2.20)

For the fixed charge density in space we get:

u∗ =
− 1

2πε0
∆z (r2

i+1/2 − r2
i−1/2) ρ + D

A
. (2.21)

But if the relaxed cell is semiconductor then using the Eq. 2.3 and notation from

Eq. 2.20 we get:

ρ(u∗)

ε0

=
1

ε0

(ρ(u) + ρ
′
(u)(u∗ − u)), (2.22)

Substituting this in Eq. 2.19 we get:

1

2πε0

∆z (r2
i+1/2 − r2

i−1/2) (ρ(u) + ρ,(u)(u∗ − u)) = −u∗ C + D. (2.23)

And this finally leads to:
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u∗ =
D − 1

2πε0
∆z (r2

i+1/2 − r2
i−1/2)(ρ(u)− ρ,(u)) u

C + 1
2πε0

∆z (r2
i+1/2 − r2

i−1/2)ρ
,(u)

. (2.24)

Now we are are ready to start iterating our system. In next subsection we will

discuss relaxation algorithm and moreover we will focus on Successive Over Relaxation

method.

2.4 Relaxation and Successive Over Relaxation

Most of the problems in physics are unsolvable analytically, therefore one needs to

use numerical approach. In complex geometry systems (as one can meet in Ashoori’s

group experiments) we are not solvable analytically therefore we had to build electro-

statical solver based on relaxation method.

The idea of the relaxation method is to iteratively improve guess, until we reach

point at which the guess cannot be improved which means that we have converged

to the solution. So, for example potential in every grid point can be expressed as a

function of it’s neighbors, such that it satisfies discredited Gauss’s law, therefore the

solution of the system is reached when all potential grid points simultaneously satisfy

Gauss’s law. The process of the relaxation is update of potential at each grid point in

function of it’s neighbors. So as we relax system we start to converge to the solution

until we reach it.

As we mentioned before in our simulation we used Successive Over Relaxation

method (SOR). So the basic idea is in to start relaxing our system with a given initial

guess and as we relax our system we improve guess. And we keep relaxing system

until we reach the solution. The relaxation algorithm is given below:

Initialize_System_Setup();

while (not converged)

{

U’ = UpdateFunction(U);

dU = U’ - U;
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U = U + SOR * \Delta U;

Apply_Boundary_Conditions();

F=Calculate_Residuals();

Xi2 = sum of all F cells ;

converged=Convegance_Test(Xi2);

}

As we can see at the beginning of each simulation we initialize geometry matrix

and initial conditions, after what we start iterative relaxation. In each iteration we

relax potential matrix (U) and calculate residual charge matrix (F). Each residual

charge cell calculates how much electric charge in the cell is induced by numerical

error. For example, ideally when system converges to the solution, free space cell

we would have zero charge. By summing together squares of F matrix we obtain

error which we call χ2. Since we are dealing with computers and number have finite

precision even in ideal case our χ2 is not gonna converge to the zero but rather

some number defined by data precision of our simulator and it’s size. However as we

converge to the solution we expect χ2 converge to the steady constant. In order to

accelerate convergence of the simulation we use over relaxation method where in each

iteration step we calculate where U∗ predicted by discretised Gauss’s Law. And then

to the updated potential we assign U = U + ω∆ U , where ∆U = U∗ − U and ω is

the over relaxation parameter (often call SOR). Reasoning for this will be discussed

in a detail in the next section.

Depending on ω value we differ three different cases

ω


> 1, over-relaxation;

= 1, Gauss-Seidel;

< 1, under relaxation.

(2.25)

According to theorem SOR method is convergent only for ω ε [0, 2] [9]. Moreover

for ω ε [1, 2], we get faster over relaxation than in the Gauss-Seidel case [9]. While for

the ω ε [0, 1] we get slower convergence. Running time comparison between Gauss-

Seidel and over relaxation method will be discussed in next section.
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2.5 Running Time Analysis

The running time of our simulator depends on the total number of points, n in our

material matrix, in addition to the system size significant difference in running times

is between classical relaxation and over relaxation algorithm. For regular relaxation

we would have to relax O(n) points per iteration, and system would converge in linear

time, O(n) iterations. Finally this would lead to the total convergence time of O(n2).

While for the Successive Over Relaxation (SOR) we would spend O(n) time for the

single relaxation, while the time necessary to reach convergence was O(n
1
2 ), leading

to the total time of O(n
3
2 ). Table of running times is shown on Table. 2.1. As we

can see using SOR method we are able to speed up convergence by factor of n
1
2 . The

main reasoning such a significant difference between regular relaxation and SOR is

that:

• Relaxation smoothes only small fluctuations (nearest neighbors) → very slow

propagation of the information through system.

• SOR works by creating ”wave” like disturbances that propagate quickly to the

edges → fast propagation of the information through system.

Relaxation SOR
Single Relaxation Time O(n) O(n)

Convergence Time O(n) O(n
1
2 )

Total Time O(n2) O(n
3
2 )

Table 2.1: Running time comparison of regular relaxation and successive over relax-
ation methods [10].

On the Fig. 2-4 we can see the distribution of the residual charge, at different

iterations for successive over relaxation method used. Note that as we start iterating

the wave like disturbances are created. This disturbances facilitate faster information

propagation and therefore faster convergence. As we can see on the Fig. 2-4 ( bottom-

right picture) as we converge to the final solution wave like disturbances disappear

and residual charge matrix looks like noise.
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Figure 2-4: Snapshots residual errors for the 2D cylindrically symmetric systems for
successive over relaxation. Snapshots were taken for iterations 1,5, 15, 30, 60, 140,
420, 900 and 2500 (starting from top-left and ending at bottom-right). We can observe
wavelike disturbances and their propagation overtime.
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2.6 ”Adaptive” Successive Over Relaxation

In our simulator we were interested to simulate nonlinear systems often found in

physics of 2DEG. Charge density in semiconductors is the function of it’s potential,

which is usually nonlinear dependence. Since even regular relaxation is not guaranteed

to converge for non linear problems, we found the way to make our SOR simulator

stable. The idea of our approach was to detect divergence in the system and as we

detect it we try to restore stability, by dropping the SOR parameter in the region of

the nonlinear ρ(u) (call it SOR∗). The χ2dependence on iteration number is shown

on Fig. 2-5. Note on the figure the change in χ2 after the iteration 501 and 865, in

which divergence was detected and SOR∗ has been readjusted (decreased by factor

of around ∼ 1.2) . For both readjustments χ2 start converging again. Finally at the

end of the day we successfully converge in finitely many iterations. In next subsection

we will discuss how do we detect, ultimate convergence.

2.7 When do we stop iterating?

In this subsection we will discuss what criteria we used to terminate iterating. The

idea of the relaxation methods is to iterate system until it reaches solution. As we

relax our system we decrease systematic error, and we continue process of relaxation

until we reach error that is caused by truncation (ex. finite precision of double). The

error in truncation on our F field looks like white the noise (Fig 2-4, bottom-right),

with amplitude proportional to the potential in the given region. So for example if

we have higher relative dielectric constant epsilon in a given region, we can expect

higher charge residuals. All this comes form the definition of the residual charge

F = (ρexternal − ρ), where ε∇2(u) = ρ. In general we defined χ2 as sum of all F

squares scaled to number of grid points relaxed,in other words: χ2 =
∑n

k=0
F 2

k

n
, where

n is number of grid cells relaxed. χ2 has roughly same value for the truncation error

limit. Depending of simulation geometry the final χ2 would vary, but in general for

the double precision truncation error was around 10−26 − 10−30.
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Figure 2-5: χ2 in function of the convergance, for ”adaptive” sucessive overrelaxation
approach.
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The algorithm we used to maintain stability and detect convergence in the simu-

lator is shown below:

nIter =0; // number relaxations performed

while (not converged)

{

relax(); // relax system

if ((nIter >500) and

(Xi2[nIter] <Xi2[nIter-50])) // if we notice Xi2 fluctuations

then

{ update_SOR*(); SOR_Steps++; // update nonlinear SOR

if (SOR_Steps_To_Converge < SOR_Steps)

then

if (Xi2[0] < Xi2[nIter]*10)

converged = true;

}

}

Our convergence criteria was following . In every iteration we would check if we

have passed at least 500 iteration and if χ2 value starts to oscillate or diverge in

last 50 iterations. So if it is the case we readjust SOR∗ parameter in the region of

nonlinear charge density. Further more we would check if we have made required

number of SORsteps (around 6 works in general). If we did so we check if our current

χ2 has significantly converged compared to initial value and if it is the case we have

converged successfully. This is shown in pseudo code syntax above.
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Chapter 3

Results

Now since we are familiar with the simulation details we are ready to explore the

results. In the first chapter we introduced the system geometry. The proximity of the

tip and sample surface is usually held constant (∼ 20nm), in addition probe in the

real had round tip. Unlike in the scanning tunnelling microscopy where we measure

tunnelling current, in scanning probe technique there is no tunnelling current and

we measure charge on the metal tip. Note that metal tip is in direct contact with

top gate, which can induce unrealistic tip charge dependence on tip bias, because

of probe - top gate coupling. In order to avoid this artifact instead of measuring

tip capacitance we would measure sample capacitance. Charge induced on the tip

is highly dependent on sample-tip proximity, bias voltage and tip shape, therefore

our first simulation explored effects of tip shape and simple-probe distance on system

capacitance (charge induced in the tip). After this we explored charge density profile

induced in 2DEG for various magnetic fields. In addition we will observe quantum

bubble and incompressible strip formation, for the magnetic fields close to the integer

Landau level fillings. After this we will explore incompressible strip formation on the

edges of the metal gate. Finally we will explore charge density profiles under the

influence of the magnetic field of the sample with donors in magnetic field.
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3.1 Tip Approach

In this experiment the goal was to determine dependence of tip capacitance on tip

shape and tip-surface proximity. In all of the experiment the tip was held on constant

bias voltage of 1V . The top and bottom metal gates were grounded to 0V and top

surface of bottom gate was covered with 0.1µm layer of dielectric with dielectric

constant Erel = 13.0. We record the tip capacitance in function of it’s distance from

the dielectric surface. The capacitance was calculated by summing the total charge

on the metal tip surface and dividing it by the tip bias voltage. The detail scheme of

the system geometry used in this experiment is shown on figure Fig. 3-1. The grid

resolution we used was around 400× 400.

The main goal of this experiment was to get qualitative insight of tip capacitance

dependence on tip shape. All of the tip capacitances showed on Fig. 3-2 are nor-

malized by division with capacitance at the biggest tip-dielectric surface separation.

Therefore all the capacitances end at relative capacitance 1.00, in addition we offseted

each consequent capacitances by 0.002 for the easier view. As we can see the sharp

tip shows the steadiest capacitance dependence of the tip-surface separation. Also

the relative capacitance for the separations less than 0.2µm is very steep function.

This specific length is mainly on the order of dielectric thickness and in a way rep-

resents the resolution of our microscope. Also from Fig. 3-2 we can conclude that

the wider tip we have the steeper dependence it is. Finally for the round tip we have

far more stepper capacitance dependence than when the tip is flat. The results ob-

tained by simulation qualitatively match with results from the real experiment, but

any quantitative comparison would be very complicated.

3.2 Quantum Bubble Formation

The main goal of this part of the experiment was to capture evolution of the 2DEG

charge density under the influence of tip voltage change. The experiment was carried

out for magnetic field ν = 0.9 where the tip voltage was varied from 0 to +2V , and
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Figure 3-1: Scheme of geometry setup for the tip approach experiment.

Figure 3-2: Dependence of relative tip capacitance on the tip shape.
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Figure 3-3: Scheme of geometry setup for the bubble formation experiment.

ν = 1.1 where tip voltage was varied from 0 to −2V . In both cases the geometry setup

was equivalent and is shown on Fig. 3-3. The tip was flat with width of 0.5µm,tip

half angle α was 90, 2DEG was buried around 0.1µm under the top surface of GaAs

dielectric with dielectric constant Erel = 13.0.

3.2.1 Quantum Bubble Inflation (ν = 0.9)

In this experiment we observed origin and inflation of the quantum bubble. The

experiment was carried out at magnetic field ν = 0.9, while tip voltage was varied

between 0.00V and +2.00V . On the Fig. 3-4 the formation of the quantum bubble is

shown. The electrons in bubble occupy the filling Landay level ν > 1.00, and bubble is

separated from rest of the 2DEG (ν < 1.00) by incompressible strip corresponding to

the integer Landay level filling factor. As we can see from the Fig. 3-4 initially when

the tip voltage is relatively small 0− 0.24V we have no bubble, but once we go over

the 0.28V the bubble is formed, with further increase of the tip-bias more electrons

are attracted by tip’s positive potential and the electron density raises leading to the

expansion of the quantum bubble. Additionally since in the real experiment we do

not capture 2DEG charge distribution directly, but through the system capacitance
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Figure 3-4: Quantum bubble formation for ν = 0.9. (Note: the consequent charge
densities are offseted by −1010e/cm2.)

change. Therefore we were interested to capture system capacitance dependence on

tip bias, Fig. 3-5. In this simulation run the system capacitance is defined as the

sample capacitance. As we can see on Fig. 3-5 the system capacitance becomes

extremely steep function of tip-bias as we go through the bubble formation. This

means that with a minimal changes of the tip-bias we get large changes in the tip

and sample charges. In other words that once the bubble is formed the electrons

from 2DEG favor accumulating in the it. Furthermore the increased accumulation of

electrons directly beneath the tip leads to sharp raise in system capacitance.

3.2.2 Quantum Bubble Depletion (ν = 1.1)

The idea of this part of the experiment was to start with 2DEG in the (ν = 1) Landay

level and then, by applying more negative bias voltage to the tip we would deplete the

2DEG region beneath the tip, entering the lower Landay level (ν = 0). So in this case

we would form the bubble that lacks in electrons. Like in the previous experiment the

bubble was separated by rest of the 2DEG by the incompressible strip. On the Fig.

3-6 we can see that initially (Vtip = −0.1V ), entire 2DEG is in the ν = 1, and then as

we decrease voltage to the Vtip = −0.2V the ”anti” bubble is formed and the 2DEG

directly beneath the tip enters the ν = 0 zero Landay level separated by rest of the
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Figure 3-5: Sample capacitance in dependence of the tip bias. (ν = 0.9)

2DEG by incompressible strip. If we decrease bias voltage furthermore, the bubble

depletion expands and the radius of the incompressible strip raises. In addition we

measured the system (sample) capacitance in function of the bias voltage. As we

can see on the Fig. 3-7 the system capacitance becomes extremely steep function of

the tip bias in regions in which the ”anti” bubble has been just formed and starts

to expand. Once the 2DEG has entered the lover Landay level the tip bias more

effectively repels electrons from 2DEG beneath tip making the sudden changes in the

tip capacitance.

3.3 Incompressible Strip Formation at the Meatal

Gate Edge

In this simulation we were interested to capture the incompressible strip formation in

2DEG for the magnetic fields close to the integer Landau level fillings. In this setup we

had metal gate on the surface of the undoped GaAs. The metal gate was covering only

the left half of the system, and 2DEG was around 90nm below GaAs top surface.

Both top and metal gate of the system were grounded (0V ) while metal gate had

potential of −42mV , this potential is caused by difference of the chemical potential
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Figure 3-6: Quantum ”anti” bubble formation for ν = 1.1. (Note: the consequent
charge densities are offseted by −1010e/cm2)

Figure 3-7: Tip capacitance in dependence of the tip bias. (ν = 1.1)
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Figure 3-8: Schematics of the metal gate edge simulation.

of Zn gate and 2DEG. Top gate was placed around 300nm above GaAs surface while

the bottom gate was 300nm below the 2DEG. the schematic representation of the

system setup is system setup is shown on the Fig. 3-8.

The goal of this experiment was to explore 2DEG charge distribution near integer

Landau Level fillings. Therefore we run simulation for magnetic fields of ν = 0.70−

1.05. The simulation results are shown on the Fig. 3-9. As we can see the electrons

are pushed from the metal gate and in the right part of the system electron density

is higher than in the left. For the ν = 0.85 the electron density on the right of the

system is overfilling the first Landau level and we observe strip formation on the

metal edge. As we raise the electron density we can see that strip shifts to the left

and finally when entire 2DEG is above ν = 1.00 the strip disappears.

3.4 Donors in Magnetic Field

In this part of the experiment we used 3D simulator to obtain realistic distributions

od the 2DEG systems often meet in Ashoori’s group experiments. The basic geometry

of the system is shown on the Fig. 3-10. As we mentioned in the introduction, the
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Figure 3-9: Electron density distribution for the metal gate edge simulation. Conse-
quent distribution correspond to different Landau Level fillings (Magnetic field ap-
plied).Each distribution was offset by 1010el/cm2 for clear view. We can see incom-
pressible strip formation on the metal edge near integer Landau level fillings.
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Figure 3-10: Schematics of the ”donor’s in magnetic field” simulations.

2DEG is trapped between layer of GaAs and undoped AlGaAs on top of which we

have Si−doped AlGaAs which is source of electron donors. The excess electrons go to

the energetically more favorable region (2DEG plane), while transferring to 2DEG the

electrons loose extra energy and stay trapped in 2DEG. This leaves the donor layer

with randomly distributed positive charges at the Si donor spots. In our experiment

the donor surface density is around 1.5×1011donors/cm2. Basically in this experiment

we will explore influence of two different charge distributions on the 2DEG charge

density profiles. First distribution assumes that each donor donates electron to the

2DEG, and we call this point charge distribution. The second distribution assumes

that only 10% of the positive point charges are fixed in the donor layer, and that

other 90% of positive charges are uniformly distributed through the donor plane, this

distribution we call ”smooth” point charge distribution. For the 2DEG profiles we

use gray colormap which colors the white high density regions while the low density

regions are colored black. In addition when edge was included for 2DEG profiles were

colored by black (ν > 1.0), gray (ν = 1.0), and white (ν < 1.0). This was done for

easier view od incompressible strip (the gray region).
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Figure 3-11: The evolution of 2DEG under the influence of magnetic field, for the
point charge donor distribution.

3.4.1 2DEG charge density induced by donor layer

In this simulation we observe the 2DEG evolution with magnetic field change for a

both ”smooth” and regular point charge distribution in the donor layer. The 2DEG

charge distribution in function of the magnetic field applied is shown on the Fig. 3-11.

As we can see initially all the 2DEG is filling the Landau level ν = 0, and 2DEG charge

distribution is dictated by random donor distribution in upper layers. Then as we

raise magnetic field some of the 2DEG starts to fill the upper Landau level, producing

the regions of incompressible strip (the uniformly gray colored regions). Similar thing

happens in case of ”smooth” point charge distribution (Fig. 3-12) except that in this

case the incompressible strips start to show for about ∆ν = 0.2−0.3 higher magnetic

field. It’s hard to give any quantitative comparison but in the case of the ”smooth”

point charge distribution it looks like it the incompressible strips are wider and more

arc features on the strip edges can be observed.
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Figure 3-12: The evolution of 2DEG under the influence of magnetic field, for the
”smooth” point charge donor distribution.

3.4.2 2DEG charge density induced by donor layer and metal

gate edge

In this part of the simulation we were interested to explore evolution of 2DEG charge

density profiles under the influence of magnetic field. We run simulations for both

point and ”smooth” and regular point charge distribution. The results are shown

on the Fig. 3-13 and 3-14. For the both distributions we can observe that at the

certain magnetic field the 2DEG in region beneath metal gate edge are separated by

incompressible strip. This means that the 2DEG which is not under the metal gate

enters the next Landau level before rest of the 2DEG. The incompressible strip along

the metal gate edge is much more distinguishable in the case more realistic ”smooth”

point charge distribution. Also incompressible strip stays in close proximity to the

metal edge never extending further that 0.1µm from the edge. Interestingly we can

observe the arc features along the strip which are caused by point charges in the

donor level.
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Figure 3-13: The evolution of 2DEG beneath the metal edge under the influence of
magnetic field, for the ”smooth” point charge donor distribution (black - nu > 1.0,
gray - ν = 1.0, and white - ν < 1.0).

Figure 3-14: The evolution of 2DEG beneath the metal edge under the influence of
magnetic field, for the ”smooth” point charge donor distribution (black (ν > 1.0),
gray (ν = 1.0), and white (ν < 1.0).
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Chapter 4

Summary

In this paper we presented the complex geometry electrostatic simulator. The simu-

lator was based on Poisson’s equation solver. For the purpose of better time/memory

performance for the specific geometries we developed 2D simulator that was opti-

mized for the cylindrically symmetric geometries and the 3D simulator that could be

applied to arbitrary 3D geometries. Both simulators were based on the Successive

Over Relaxation (SOR) technique. Once we include semiconductor to the simulation

the problem becomes nonlinear, because semiconductor charge density is dependent

on it’s potentia. For nonlinear problems there is no guarantee that SOR converges.

We maintained stability by introducing the SOR* parameter (which is SOR for non-

linear materials). Whenever we would detect instability in the simulator we would

decrease SOR* by dividing it with SORstep (usually SORstep = 1.2). This worked

perfectly fine and we were able to simulate nonlinear materials (semiconductors in

magnetic field). Using the simulator developed we explored different properties of

the metal probe - 2DEG interaction. First we explored properties of the tip shape on

the tip capacitance. We saw that for the tip-dielectric surface distances greater few

tip widths/radiuses, tip shape is not as relevant. For the close tip-sample proximities

the tip capacitance becomes steep function and the wider tip it the steeper function

we have. Finally the steepest dependence was observed for the rounded tip. We also

explored the quantum bubble formation and depletion. In both cases the bubble was

separated from rest of the 2DEG by the incompressible strip and origin of bubble
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Figure 4-1: The geometry of the scanning probe above 2DEG.

formation/depletion was always followed by sharp changes of tip capacitance in func-

tion of tip bias. In addition we explored the incompressible strip formation at the

metal edge, where it was noticed that the strip remains in close proximity (∼ 0.1µm)

to the metal edge. Finally we explored the realistic 2DEG profiles induced by the

positive point charges distribution in the donor layer of 2DEG heterostructure. We

observed the 2DEG charge density evolution in function of the magnetic filed change

for the point charge and ”smooth” point charge distributions. We explored 2 different

geometries one where metal gate edge was present and the other where we had no

metal gate. The results obtained could be qualitatively compared to those obtained

by experiment, while the ”smooth” point charge would result much more realistic

features. Finally the test examples we showed in the results chapter are just a exam-

ples of problems that we can solve using the simulators we developed. The simulators

can be applied to the various other problems and I hope their robustness, speed, and

flexibility will find while applications in further research of sub-micronic devices.
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