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Abstract

We study electron additions in 2D quantum dots of varying sizes and over a wide
range of electron densities using Single Electron Capacitance Spectroscopy. For high
electron densities in dots of any size, we observe a conventional pattern of nearly
periodic Coulomb blockade. However, the addition spectra of electron droplets larger
than 0.2 µm in diameter and below a critical electron density (n0 = 1 × 1011cm−2

in all of our dots) are highly nonperiodic and contain pairs and bunches: two or
more successive electrons can enter the dot at nearly the same energy; they show
almost no sign of repelling each other. Application of high perpendicular magnetic
field increases n0, creating a sharp boundary between periodic and “paired” parts
of the addition spectrum. Previously, we hypothesized that disorder and electron
interactions within the low-density dot split it into two spatially separate droplets,
and pairing arises once this localization occurs. We have produced experiments to
study this transition in a controlled fashion.

One probes the spatial extent of electronic wavefunctions by investigating the
dependence of these energies on changes in the dot confining potential. We find that
for low electron densities, electrons occupy distinct spatial sites localized within the
dot. At higher densities, the electrons become delocalized, and all wavefunctions
are spread over the full dot area. The transition occurs around the critical electron
density n0 = 1 × 1011cm−2. For densities just below the critical density our data
establish the existence of electronic states localized at the dot’s periphery.

We also create a dot with a potential profile containing two minima separated by
a barrier. Our studies conclusively demonstrate that under precisely the same condi-
tions for observation of the paired electron additions, a low-density electron droplet
inside the dot indeed splits up into smaller fragments, each residing in a disorder
minimum. We find that the two electrons added as a pair actually enter into spa-
tially distinct regions within a dot, and we measure the remnant residual interaction
between the fragments. Surprisingly, it displays nearly complete independence on
the strength of the applied field for fields larger than required for the localization
transition.
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Chapter 1

Introduction

A steadfast drive to build faster and more powerful computers has led to a revolution

in the semiconductor industry. Tremendous technological advances over the past few

decades have made possible fabrication of semiconductor structures of unprecedented

purity and crystalline perfection. In addition, the newfound ability to confine elec-

trons to short length scales has furnished physicists with new model structures and

has enabled them to explore new effects.

As a result, a new field of physics has emerged - mesoscopics. Mesoscopic physics

deals with systems whose length scales are large compared with the size of atoms but

are short compared with those of macroscopic samples. Because of the properties of

materials the quantum mechanical phase coherence can be maintained over distances

of a few microns at low temperatures (below 1K). Since modern fabrication techniques

allows us to scale down the device dimensions, quantum effects can be studied. These

include various manifestations of the electron-electron interaction.

Physicists are particularly interested in systems of reduced dimensionality. Ex-

perimentalists can design and fabricate a device to address specific theoretical issues.

Two-dimensional systems in strong perpendicular magnetic fields have the remark-

able properties of a quantized Hall conductance, which results from quantization of

the energy in a series of Landau levels [1, 2] . Modifications of Fermi liquid theory

to account for the role of electron-electron interaction and the possibility of the exis-

tence of a 2D conducting phase at low temperature remain subjects of strong current
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interest [3, 4, 5, 6]. The studies of conductance of one dimensional channels led to

the discovery of a formal relation between conduction and transmission, known as the

Landauer formula [7, 8]. More recent experiments probe the Luttinger liquid [9, 10],

which describes the interactions of electrons in one dimension. The physics of zero

dimensional structures, known as quantum dots or artificial atoms [11, 12, 13, 14]

have produced a number of novel results, such as the recently observed Kondo effect

[15, 16]. The real advantage of artificial atoms in experiment is that their size, shape

and electron occupancy can be adjusted, even in situ, thus enabling experimentalists

to tailor their systems to specific needs.

While it is not possible to name every area of present-day interest, we point the

reader to good reviews of the field, which can be found in references [17, 7, 18, 19].

Still several topics, which are the most relevant to the research described in this thesis

deserve individual introduction. We present them in the following sections.

1.1 Two-Dimensional Electron Systems in GaAs

Among novel modern structures, GaAs/AlGaAs heterostructures have emerged as

the most popular material for confining electrons. In these structures electrons are

confined at the interface of GaAs and AlGaAs, forming a thin layer of highly mobile

electrons. [20]. Motion perpendicular to the layer is frozen out, and these electron

compose what is referred to as a two-dimensional electron gas (2DEG). Chapter 2

provides more details on the exact structure of such systems.

In addition to the reduced dimensionality, GaAs/AlGaAs heterostructures com-

bine a number of desirable properties. A large screening length facilitates variation

of the electron density by moderate electric fields. The low electron density implies a

large Fermi wavelength (typically 100 nm), which is comparable to the dimensions of

features that can be fabricated with standard semiconductor processing techniques.

The mean free path can be quite large (exceeding 10µm). A circular Fermi surface

simplifies analysis. Finally, the low effective mass of m∗ = 0.067m0 generally increases

the magnitude of quantum effects.
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1.2 Localization in Two-Dimensional Systems

For half a century physicists have worked to understand localization of strongly in-

teracting electrons in a disorder potential. The two basic mechanisms that cause

localization of charge carriers are the electron interaction [21] and disorder [22].

Anderson pointed out that if the disorder is made progressively stronger, one

should expect a qualitative change in the nature of electron wavefunctions in three

dimensional samples. Based upon the scaling hypothesis introduced by Thouless

[23, 24], a second major advance in the Anderson localization problem appeared in

publication of seminal paper by the “gang of four” [25]. The most remarkable con-

clusion was that in the limit of zero temperature and infinite sample, electrons are

always localized in low dimensional systems. This discovery led to a series of remark-

able phenomena which go under the name of both “weak” and “strong localization”.

These theories describes single particles and did not consider the electron interaction

phenomena. On the other hand, Mott demonstrated that localization can occur in a

perfectly periodic lattice with no disorder if sufficiently strong repulsion is introduced

between two electrons occupying the same lattice site.

Both disorder and electron interaction exist in real physical systems. Though their

interplay in two-dimensional systems has been a subject of intense experimental and

theoretical studies [17, 26, 27, 3, 4], no theory exists which fully describes the effects

of both disorder and interaction.

The problem is especially difficult when the electron interactions are strong. This

was demonstrated once more by recent experiments, which suggested the existence of

a conducting phase in dilute two dimensional electron systems in total disagreement

with the predictions of the scaling theory [25] of noninteracting electrons. Strong

electron electron interactions may thus be a central feature that allows the existence

of a conducting phase in two dimensions. However, the nature of this phase remains

unclear.

Up to now, the localization of electrons has been studied in transport and optical

experiments in two dimensional bulk samples. The principal drawback of these tech-
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niques is that the measured conductivity is a macroscopic quantity averaged over the

entire sample.

Quantum dots provide convenient systems to study electron localization on a

microscopic scale. In essence, quantum dots are tiny puddles of two dimensional

electrons. By measuring how the energy to add individual electrons to a quantum

dot changes in response to an external parameter (such as magnetic field or the dot’s

confinement), we directly assess the spread of electron wavefunctions within a puddle

and the position of a particular electron if it is localized.

However, conventional lateral dots do not function well for localization studies.

The traditional transport spectroscopy techniques for studying lateral quantum dots

[11] sense primarily delocalized electronic states. A possible exception is transport

studies in vertical structures [28, 13], but these do not permit variation of electron

density, a critically important parameter that changes the effective strength of electron

interactions. We note that since the Fermi energy EF ∝ n in two dimensions and the

electron interaction energy Eee ∝ n1/2, the ration EF /Eee ∝ n−1/2. Therefore, the

lower the electron density, the greater the role of electron-electron interactions.

We thus have developed a novel experimental technique: Single Electron Ca-

pacitance Spectroscopy (SECS) [29, 30], which is described in Chapter 2. It has

demonstrated the capability of probing both localized and delocalized states of elec-

trons. Furthermore, this method allows us to study two dimensional dots of various

geometries and sizes over a broad range of electron densities [29, 31, 32, 33, 34].

1.3 Coulomb Blockade

In this section we introduce the Coulomb blockade - a vital notion for any quantum dot

experiment. We briefly review the conditions under which Coulomb charging effects

are important. In other words, the conditions under which the addition/subtraction

of an individual electron to/from the system has a measurable effect.

Let us consider the electronic properties of the system depicted on the Figure 1-1.

It consists of a small metallic island coupled to two terminals: an infinite reservoir of

15



weak link

reservoir island

gate electrode

Vg

Figure 1-1: A small metallic island is coupled to an infinite a reservoir of electrons and a gate
electrode. Electron transfer can occur only between the island and the reservoir as indicated by the
dashed line. Gate electrode is coupled capacitively and is used to adjust the electrostatic potential
of the island. The capacitance between the island and the gate is Cg.

16



electrons and a gate. Particle exchange can occur only by tunneling through a barrier

between the island and the reservoir, as indicated by the dashed line. The gate is

coupled to the island only electrostatically or capacitively, and can be used to adjust

the potential of the island. If we first assume that the coupling of the island to the

reservoir is absent, then the number of electrons on the island is an integer N , i.e. the

charge on the island is quantized and equal to Ne. Now if we allow a weak tunneling

between the island and the reservoir, then the number of electrons N adjusts itself

until the energy of the whole circuit is minimized. We will discuss below what this

“weak coupling” means.

Consider an electron tunneling event from the reservoir onto the island. The

charge on the island is suddenly changes by the quantized amount e. The associated

increase in the Coulomb energy can be conveniently expressed in terms of the total

capacitance C of the island. An extra charge e changes the electrostatic potential by

the charging energy Ec = e2/C. This charging energy becomes important when it

exceeds the temperature in the reservoir kBT . If this is the case, the second electron

cannot be transferred from reservoir onto the island, because the reservoir simply does

not have electrons with sufficiently high energy. This suppression of charge transfer

is called Coulomb blockade [14, 19].

The second condition for the Coulomb blockade is that the barrier is opaque

enough so that electrons are localized either in the reservoir or on the island. This

means that the quantum fluctuation in the number N due to tunneling through

the barrier is much less than one over the time scale of the measurement. This

requirement translates to a lower bound for the tunnel resistance Rt of the barrier.

The fluctuation of the island’s charge was calculated for the first time by Matveev

and Glazman [35, 36]. They showed that for values of Rt À h/e2 the charge on the

island is quantized in units of the electron charge.

Intuitively, this estimate can also be obtained by the following line of arguments,

first proposed by Thouless who considered a similar problem when he examined the

conductance of thin metallic wires [37]. He argued that electrons are localized on

a metal particle if the average energy level spacing ∆ε is larger than the lifetime
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broadening Γ of the levels:

∆ε À Γ (1.1)

In our situation the lifetime broadening Γ = h/τ arises because electrons escape from

the island to the reservoir by tunneling across the barrier during the time τ . Consider

a voltage V applied between the island the reservoir. The resulting current will flow

by means of the eV/∆ε levels, and each level on the average carries a current of order

of e/τ . Then the barrier resistance is:

R =
V

I
=

h

e2

∆ε

Γ
À h

e2
(1.2)

In summary, the two requirements for observing effects due to single electron

charging are:

Rt À h/e2 (1.3)

e2/C À kBT (1.4)

The first one can be met by weakly coupling the island to the reservoir. The second

one can be met by making the dot smaller, thus minimizing its capacitance; and by

cooling the entire system to low temperatures.

A capacitively coupled gate electrode with the capacitance Cg (see Figure 1-1) can

be used to lift the Coulomb blockade and to facilitate electron transfers. Application

of a gate bias voltage Vg to the gate electrode placed nearby changes the electrostatic

potential of the island in a continuous manner. In terms of charge, while tunneling

changes the island charge by an integer, the gate voltage induces an effective continu-

ous charge Q = CgVg. This charge represents the charge that the island would like to

have. If we sweep the bias Vg, the build up of the induced charge will be compensated

in periodic intervals by the tunneling of discrete charges onto the island. Figure 1-2

illustrate this idea by plotting both the charge on the dot and the continuous charge

Q as a function of the bias voltage Vg. The charge on the island can then be measured

by capacitive technique as we describe in Chapter 2.
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Figure 1-2: Schematic comparison, as a function of gate voltage, between actuall and continuous
charge (see text). The actuall charge on the island changes by integer number of electrons. The
continuous charge Q = CgVg represent the charge that the island would like to have to minimize its
energy.
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Finally, we would like to refer the reader to the several review articles in the

field for more detailed description of the underlying physics [14, 13]. Physicists from

building 13 can find an excellent and very clear discussion of Coulomb blockade in

Ethan Foxman’s thesis [38].

The simple classical reasoning we have presented shows that electron addition

onto the island or the dot, as we call it, are periodic in the gate voltage. However,

physical phenomena inside the dot with a characteristic energy scale compared to the

charging energy Ec disrupts this periodicity. In fact, the addition spectrum, i.e. a set

of the gate bias Vg values at which electron additions occur, provide us with insight

into the physics of the dot. The amount of energy required to add an electron to

a dot depends on electron interactions within a dot. By making our island out of

the two dimensional electron gas (see Chapter 2), we are able to study localization

phenomena in two dimensional electron puddles.

1.4 Thesis Overview

After this introduction the thesis begins in Chapter 2 with a decription of our tech-

nique. We present the basics of our heterostructure composition and the fabrication

procedures. A special section deals with our capacitance measurement apparatus,

which permits quantitative spectroscopy of discrete quantum levels in the structures

containing as few as one electron.

Chapter 3 reviews the previous results of our group, which motivated experiments

presented further on. We will describe a profound violation of Coulomb blockade in

quantum dots: we will show that under certain conditions, electron additions can

occur in “pairs” or even “bunches” [29, 30, 32]. By summarizing our experimental

findings, we will show that those suggest a relation between electron localization

and the pairing phenomena [39]. To test this hypothesis, we have produced two

experiments [33, 34] to study the localization-delocalization transition in quantum

dots in a controlled fashion, which we descibe in Chapter 4 and Chapter 5.

In the first experiment [33] we probe the spatial extent of electronic wavefunctions
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by investigating the dependence of the addition spectra on changes in the dot confining

potential. We describe the localization-delocalization transition in quantum dots at

zero magnetic field. Chapter 4 establishes the existence of electronic states localized

at the dot’s periphery and arising at densities just below the critical density.

To fully investigate the effect of magnetic fields on electron localization, we created

a dot with an artificially introduced disorder potential [34, 40]. Chapter 4 present

results of localization in such a “model” disorder. We determine the conditions under

which a low-density electron puddle becomes unstable and actually breaks up into

smaller fragments.

Finally Chapter 6 concludes with possible directions for future research. Two

appendices present a detail description of our fabrication methods. One lists the

recipes we used and the other describes a setup procedure for the electron beam

microscope.

21



Chapter 2

Single Electron Capacitance

Spectroscopy

This chapter describes “Single Electron Capacitance Spectroscopy” (SECS). SECS

was initially invented by Ashoori [29, 30], and has been significantly improved over

the years in our lab. These developments have allowed us to take most of the data

presented in this thesis.

SECS permits detailed measurement of the ground state energies of quantum dots,

containing a variable and known number of electrons. We position a quantum dot

between two plates of a tunnel capacitor. Electrons may tunnel between the dot and

the bottom plate, while a large barrier forbids tunneling to the top plate. By adjusting

the voltage applied across the plates, single electrons are caused to tunnel onto and

off the dot. Once an electron tunnels onto the dot, it induces an image charge on

the top plate. By integrating an ultra sensitive cryogenic home-built amplifier on the

chip containing the sample, we detect and precisely measure this image charge.

To optimize the signal-to-noise-ratio, we employ a conventional lock-in technique.

In addition to applying a dc bias across the tunnel capacitor, we force single electron

tunnel back and force between the dot and the bottom plate using an ac voltage.

We then synchronously detect signals due to electron tunneling. Peaks appear in the

response at those particular positions in dc bias at which the quantum dot energy

level is resonant with the chemical potential in the bottom plate. We convert the
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dc bias scale into an energy scale for the dot, using a simple scale factor, deduced

from the sample geometry. Thus, we measure the ground state energy levels of a

dot, containing specifiable number of electrons as a function of an external parameter

(magnetic field, shape and strength of the confinement potential) In addition, by

measuring the phase of the signal at different frequencies, we deduce the tunneling

rate of the single electrons relative to the frequency of the ac excitation.

We begin with our wafer design. Then we describe how we create dots with dif-

ferent confinement potentials. Next we explains the details of capacitance measure-

ments. Finally, we point out the advantages of SECS over the conventional transport

techniques.

2.1 MBE Wafer

Figure 2-1A shows the essential structure of our samples. The sample is a GaAs/AlGaAs

modulation-doped [20] heterostructure grown by molecular beam epitaxy. Figure 2-

1B displays the corresponding conduction band diagram. Our substrate is intrinsic

GaAs covered with a cleanup MBE layers, which trap out Si atoms which might

otherwise migrate into our structure. First, we grow a heavily doped GaAs contact

layer that remains conductive at low temperature. This layer serves as the bottom

plate of our tunnel capacitor. On top of the contact layer, we grow a GaAs spacer, a

GaAs/AlGaAs tunnel barrier and a GaAs quantum well. The last layer defines a two

dimensional (2D) electron system. Our processing procedure, described in section

2.2, further confines electrons to small regions within the GaAs quantum well, thus

defining our dots. The quantum well is covered by a blocking GaAs/AlGaAs barrier

and a GaAs cap layer. A top plate of the capacitor is formed at the fabrication stage

by evaporating Cr/Au gate on top of the structure.

The exact thicknesses of the layers, from bottom to top, are as follows: 6500

Å GaAs undoped clean up buffer; 6500 Å GaAs/AlGaAs undoped clean up super-

lattice; 2000 Å GaAs n+ doped contact layer; 400 Å GaAs undoped spacer; 80 Å

GaAs/AlGaAs superlattice tunnel barrier; 175 Å GaAs undoped quantum well; 500
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Top gate: Cr/Au

Cap layer: GaAs
Blocking barrier: AlGaAs

Quantum well: GaAs

Tunnel Barrier: AlGaAs
Spacer: GaAs

Contact layer: n+ GaAs

Substrate:  undoped  GaAs

x 1
x 2

x1/x2=1/η

BA

Energy

Figure 2-1: (A) Structure of our samples with layer thickness shown. (B) Conduction band energy
diagram of our samples.
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ohmic contact

lead contact pads

mesa

Figure 2-2: Top panel shows a photograph of the entire sample. One can see a mesa with ohmic
contacts and a pattern of sixteen leads converging to the center of the mesa. Bottom panel is a
zoom-in into the mesa center. Mesa is about 40µm wide. Lead contact pads are 100× 200µm.
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Å AlGaAs undoped blocking barrier, 300 Å GaAs undoped cap layer. We introduce

Si δ doping in the middle of the blocking barrier 200 Å from the quantum well in

order to provide electrons for the quantum well.

The two barriers in our wafer are very different. The lower one (tunnel barrier)

allows electrons to tunnel between the bottom plate and the quantum well. The upper

one (blocking barrier) is thick enough to prevent electrons from tunneling between

the quantum well and the top plate.

In our tunnel capacitor only one electron is induced to tunnel between the contact

layer and the discrete state in the well. Since electrons travel only a fraction, 1/η, of

the distance between the plates of the tunnel capacitor (see Figure 2-1), the amount

of charge induced on the top plate is e/η. Therefore, the closer the quantum well is to

the top plate (i.e. the thicker the tunnel barrier is), the more image charge is induced

in response to the single electron tunneling event. To make the tunnel barrier thick

without sacrificing its transparency, we grow the barrier as a superlattice and add the

spacer layer underneath it.

2.2 Fabrication of Vertical Dots

Here we describe the fabrication process that we devised to create our quantum dots.

Our wafer contains the quantum well sandwiched between the contact layer and the

top surface, as was described in section 2.1. Electrons in the well are already confined

in the direction of the growth. The goal of the fabrication process is to further

confine these electrons laterally to small pockets within the quantum well plane,

and to make contacts to the top and the bottom electrodes of the tunnel capacitor.

Our measurement apparatus requires that a great care be taken to minimize shunt

capacitance between the leads to the top and the bottom plate (see section 2.3).

We start by performing three preliminary processing steps on a piece of wafer

using optical lithography. We define a mesa, make ohmic contacts, and lay out metal

leads. Photographs of a prefabricated sample are shown on Figure 2-2.

The mesa is defined in the form of an elongated rectangle by wet etch. The etchant
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used (H2SO4−H2O2−H2O) produces anisotropic edge profiles [41]. We intentionally

align the longer side of the mesa with the <1-10> crystallographic direction to yield

an outwards edge profile along this side of the mesa. The etch removes 4500 Å of

material, cutting deep below the contact layer, thereby limiting the bottom electrode

to the region underneath the mesa.

Two Ni/Ge/Au contacts are deposited at both short sides of the mesa. They are

annealed all the way through to the bottom electrode, so that they contact both the

2D gas in the well and the bottom electrode. Even though our measurements utilize

only one contact, the second is necessary for testing the contacts at low temperature

prior to starting experiments.

Outside of the mesa we pattern multiple Cr/Au leads converging to the small

region near the center of the mesa. Each lead starts with a bonding pad and stops

a short distance from the mesa edge. Once the dots are defined on the mesa, each

is used to connect to one dot. Because the previous etching procedure eliminated

the contact layer underneath the leads, the capacitance between each lead and the

contact layer is small.

Once this preliminary fabrication is complete, we turn to the actual creation of the

dots. This process involves two or three electron beam lithography steps. These steps

vary from one experiment to another [29, 32, 33, 34] and consequently are outlined

below in separate sections.

2.2.1 Electron Beam Lithography

Our choice of electron beam lithography over other lithographical methods is influ-

enced by two major factors. First, it can reproducibly make features of about 60 nm.

Second, it allows us to make modification to a pattern easily and quickly without the

need to make additional masks.

One of the problems inherent to lithography is that of alignment of several subse-

quent patterns. In our case this is particularly difficult because the typical features of

our patterns are extremely small. We solve this problem by careful designing proper

alignment marks.
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Another pitfall we encountered is the need to control the resist profile with great

precision. In our fabrication process described below we deposit several thin metal

films. In order to insure the continuity of the films, some of the depositions are

performed at different angles. The success of the following lift-off procedure depends

to a large degree on the quality of undercut of the resist profile. However, very large

undercut undermines our ability to make sharp features, and the top resist layer

often falls without the support of the bottom layer. We adopted a procedure with

two development steps on a bilayer resist similar to that outlined in David Berman’s

thesis [42]. Figure 2-3 shows the effect of this development procedure on pattern

profiles.

2.2.2 Individual Circular Dot

Early experiments [29, 31, 32] described in Chapter 3 were conducted on individual

single circular dots. The following principle [43, 44, 45] was chosen to confine electrons

to small pockets within the quantum well plane. Almost every A3B5 material, and

GaAs in particular, has an extremely large density of surface states in the middle of

the bandgap. In other words the Fermi level at any surface of the material is pinned

to the middle of the bandgap, and a depletion layer exists under the surface of the

material.

To make a single dot, we form a small Cr/Au disk using electron beam lithography

on top of the etched mesa. This disk is used as a mask for the reactive ion etch, which

removes 300 Å of material throughout the mesa. Depletion under the etched surface

confines electrons to the region of the well underneath the disk. We refer to this

region as “the dot” and to the disk as “the top gate”. Usually we make many dots

on one mesa, each aligned with one of the previously defined leads.

We note that because of the depletion of the two-dimensional gas in the quantum

well, the previously defined Ni/Ge/Au contacts contact only the lower n+ layer (see

Figure 2-4).

In the next lithographical steps we define narrow metal patches that run up the

mesa edge and connect the dots on the mesa to the leads, which are located just off
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A

B

Figure 2-3: Effect of using a two-step development procedure. Profile of a single-pass line written
in a bilayer resist. (A) For one step development procedure. (B) For two step development procedure.
Second developer attacks only the lower layer. This results in larger undercut and more narrow line.
The actual scale is indicated at the bottom each micrograph by 200 nm line.
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Figure 2-4: A schematic cut through our samples. Electrons are confined to the region under the
gate, which we refer to as “the dot” Electron transfers occur between the n+ contact layer and the
dot as indicated by arrows. A metal patch runs up the mesa edge and connects the dot to nearby
electronics.
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the mesa. The Cr/Au evaporation at this step is done at two angles. This and the

outward edge profile of the mesa ensure that the patches do not break at the edge of

the mesa.

A rough schematic cut through our dot is depicted in Figure 2-4.

In the described process the general shape and size of the dot is predominantly

determined by the shape and size of the initial metal disk. In the experiments [29,

31, 32] described in Chapter 3, dots were defined by using metal disks with diameters

ranging from 300 nm to 2 µm.

2.2.3 Dot with Adjustable Confinement: Putting an Addi-

tional Gate Around a Dot

SECS precisely measures the energies required to add individual electrons to a quan-

tum dot. One of our experiments [33] probes the spatial extent of electronic wave-

functions by investigating the dependence of these energies on changes in the dot

confining potential. To control the dot confining potential in situ, we fabricate an

additional side gate.

Although the first fabrication step remains almost the same as described in sec-

tion 2.2.2, two modifications have been made. As before, a small Cr/Au top gate on

the top surface is formed. This top gate serves as a mask for etching, which com-

pletely depletes the quantum well layer outside the covered region, thereby producing

the quantum dot below the top gate. However, the shape of the gate is different: it

has a rather long tail extending sideways. Figure 2-5 shows two micrographs of the

sample. This tail is made narrow enough, that there are no electrons beneath it, and

the dot itself is still circular. Finally, we decided on utilizing a wet etching procedure,

rather than a dry etching for the reasons listed below.

In the next a thin film of Cr/Au is evaporated over the formed structure. We

evaporate without any tilt, and because the film is adequqtely thin it actually breaks

at the edges of the previously fabricated top gate and can be contacted separately

(see Figure 2-5). This new gate serves as a side gate allowing repulsion of electrons
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from the edges of the dot through the application of a negative potential.

At the last step, we connect the dot and the side gate to the leads by patches.

The last evaporation is a double angle evaporation to ensure that the patches do not

break at the edges. One such patch contacting the dot through its tail can be seen

on the Figure 2-5.

We noticed that the coupling between the side gate and electrons in the dot de-

pends upon the chosen etching procedure; the wet etch provides much better coupling.

We think that the wet etch produces a smaller side depletion resulting in a larger elec-

tron puddle. The larger the electron puddle is, the closer it is to the side gate. This

assumption is not unrealistic. Wet etch procedure has been known to dramatically

reduce the surface density of states. This phenomenon is used in fabricating optical

devices to reduce nonradiative recombination, which occurs through the surface state

[46, 47].

2.2.4 Dot with Artificial Disorder Potential

In a recent experiment described in references [34, 40], we study the effects of disorder

on localization in quantum dots. We intentionally create a dot with an artificial

“disorder” potential: a potential profile containing two smooth minima separated by

a barrier, as in the double dot system described below.

As we mentioned in section 2.2.2, the dot’s geometry is determined mostly by the

shape and size of the initial metal disk. Our previous experiments [29, 31, 32] studied

individual circular dots.

However, the disorder inevitably present in the system strongly affects the exact

shape of dot’s confining potential. In fact, in the low electron density regime, the

combined effect of disorder and electron interaction leads to startling observations in

the dot addition spectra [29, 30, 32, 39].

Let us first discuss the source of the disorder. We introduced the δ doping Si layer

in the middle of the blocking barrier to provide the quantum well with electrons.

The positive charge of the donor atoms, which have given up their electron, attracts

electrons and binds them to the quantum well. However, this positive charge is not
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dot

sidegate

metal
patch

Figure 2-5: Two micrographs of the samples with the sidegate. The top one is a view at an angle,
the bottom one is straight from the top. A thin film (thus barely visible on the top view) surrounds
the dot without directly contacting it. A metal patch, which connects the dot to our setup is seen
on the left. The edge of the mesa can be seen on the top panel
The scale is indicated at each micrograph by 1µm bars.
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300 nm 200 - 300 nm

Figure 2-6: Top view micrograph of a dumbbell shaped top gate used to define out double dot
system. The dirt around the edges of the structure are left over from the lift-off procedures. We
remove it by ozone cleansing.
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uniform. The donor atoms within the layer are spaced randomly, and only a fraction

(about 30%) of them are ionized. Therefore, there are multiple local minima in the

plane of the quantum well underneath positively charged donor atoms.

The scale of lateral variations of the disorder potential within the quantum well

plane depends both on the average distance between ionized donors, as well as on the

distance between the donor layer and the well. The latter is the largest of for our

samples, and the variations of the disorder potential are somewhat diminished. In

fact, the distance between the δ doping layer and the quantum well sets the lateral

scale of the disorder up to a numerical prefactor [48].

Because of the fixed and finite lateral scale of disorder in our samples, our larger

dots are more vulnerable to the presence of disorder. We vary the size of the dot by

varying the size of the top gate. We find that our smallest dots with lithographical

dimensions 350 nm or less have smooth circular symmetric confinement. See section

5.2 for the data and the discussion. Larger sized dots typically have a confinement

potential with more then one minimum.

To create a confinement potential containing two smooth minima separated by

a barrier, we define the top gate in the shape of a dumbbell. Figure 2-6 shows an

electron micrograph of the top gate before it is connected to the lead. The following

dry etching produces the desired double dot system. Each half of the dumbbell gate

is 300 nm in diameter, so the resulting potential well under the gate has just two

smooth minima.

By varying lithographic dimensions, we control the height of the saddlepoint be-

tween two minima, and therefore the strength of “disorder”. We examine a number

of samples to investigate the broad range of this disorder strength.

2.3 Capacitive Measurements

The fabrication procedure described in section 2.2 defines the system depicted on

Figure 2-7. The dot is arranged between two plates of a parallel plate tunnel capacitor.

Electrons may tunnel back and forth between the dot and the bottom plate, while
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A

B

C

Figure 2-7: Schematic of our setup for three different experiments. The dot is arranged between
two plates of a parallel plate capacitor. Electron may tunnel back and forth between the dot and
the bottom plate as indicated. Magnetic field is applied along vertical arrows. (A) individual dot.
(B) dot with a sidegate used to adjust its confinement in situ. (C) double dot: two smooth minima
separated by a barrier. Electron addition to different dot can occur independently
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tunneling to the top plate is forbidden. In our experiment we adjust the top gate bias

Vg: the potential applied across the plates of the capacitor. We register the values

of the gate bias, at which electrons are added to the dot and convert them into the

energy scale for the dot.

Intuitively, our measurement technique can be understood in the following sim-

ple terms. Application of a large negative voltage to the top gate depletes the dot

completely. By sweeping the gate bias in the positive direction, we add electrons to

the dot. Because of Coulomb blockade[11, 13, 14] (see section 1.3), electron additions

happen in one by one fashion only at certain values of the gate bias. The schematic

dependence of the dot charge on the gate bias is depicted on Figure 2-8A. The in-

creasing charge on the dot induces an image charge on the top plate. This charge

is equal to dot’s charge up to a numerical factor. To register this image charge, we

apply a tiny ac voltage to the bottom plate and feed the signal from the top plate into

our lockin. The resulting signal is proportional to the derivative of the dot charge

and schematically shown on Figure 2-8B. Let us now turn to a more mathematically

elaborated description.

2.3.1 Sample Impedance

Figure 2-9A shows an equivalent circuit diagram representing our samples. The ca-

pacitance Ctop is the capacitance of the top blocking barrier. Cbottom is the capacitance

of the bottom tunnel barrier shunted by the barrier tunneling resistance Rbottom. The

values of Ctop and Cbottom depend on the area of the dot and on the heterostructure

layer thicknesses. In our experiment, both capacitances have approximately the same

value and are about 0.1 fF. As we discussed in section 1.3, the additions of electrons

to the dot can be suppressed by the Coulomb blockade. Consequently, Rbottom is not

a linear circuit element.

However, for our analysis two limiting situations are sufficient. For most values

of the gate bias Vg electrons are not allowed to tunnel onto the dot, and Rbottom is

infinite. This is valid provided that the temperature and the excitation voltage is

smaller than the Coulomb gap - the charging energy of the dot Ec = e2/Cdot. For
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the values of Vg, at which an electron can be added to the dot, Rbottom has a finite

value, that we denote by R∗
bottom. R∗

bottom depends primarily on the heterostructure

parameters. The samples have been designed, so that the tunneling frequency:

ftunnel =
1

2πR∗
bottomCbottom

(2.1)

is greater than the frequency range of our measurements. Thus, once a quantum

state in the dot is aligned with the Fermi level in the bottom electrode, there is

always enough time during one half cycle of the measuring frequency for charge to

move onto the dot from the bottom electrode and bring the two into equilibrium. So

in this case Rbottom, can be considerate to be zero.

In both of the above mentioned circumstances the sample impedance is capacitive

(as shown on Figure 2-9B), but the exact values are different. When Rbottom = 0, the

capacitance between the top and the plate is just Csample = Ctop. When Rbottom = ∞,

this capacitance is:

Csample =
CtopCbottom

Ctop + Cbottom

≈ Ctop

2
(2.2)

Hence, the sample capacitance increases for the values of Vg at which electron addi-

tions occur. Although this increase is very tiny (about 0.1 fF), it can be measured

precisely by the method delineated below.

2.3.2 Measurement Apparatus Design: Pitfalls and Solutions

Essentially, our sample is a capacitor Csample, whose value changes as we scan the bias

Vg between its two plates. We apply an ac excitation Vexc to the bottom electrode

of our tunnel capacitor and feed the signal from the top gate into a measurement

apparatus. This way, the excitation voltage is divided between the sample capacitance

and the input capacitance of the apparatus as shown on Figure 2-9C:

Vout =
Csample

Csample + Cinput

× Vexc (2.3)
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Figure 2-9: A. Equivalent circuit diagram of the sample. B. Corresponding impedance for
Rbottom = 0: Ctop only and for Rbottom = ∞: Ctop and Cbottom in series. C. The simplest dia-
gram for capacitance measurements. The sample is represented by a variable capacitance Csample.
Cinput is the input capacitance of the measurement apparatus
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Figure 2-10: Diagram of the two stage cold amplifier
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The measurement instrument (our lock-in) registers Vout. In effect, this is a two

terminal measurement of the sample impedance: the excitation voltage is applied

across the sample and the resulting current is measured by reading the voltage across

the input impedance of the measuring instrument. This current is equal to the charge

induced on the top plate of our tunnel capacitor during one period of the excitation

and in turn is equal to the charge of the dot up to a numerical factor. Thus our

circuit can be thought of as an ac electrometer.

There are two obvious ways to maximize the output signal. The first one is to

increase the excitation voltage Vexc, and the second one is to minimize the input

capacitance. However, Vexc limits the energetic resolution of our experiments and

we are coerced to keep it under 100µV rms. Also, signal from single electrons does

not increase once Vexc/η > kBT [29]. Minimization of the input capacitance becomes

especially tricky because the experiments are conducted at ultra low temperatures,

which requires huge cryogenic systems. As the result, the sample is situated at least

10 feet away from the lock-in, and the enormous capacitance of the cable connecting

the two shunts the input impedance of the lockin. This capacitance is at least 300

pF, making Vout ≈ 0.3pV . This is practically not a measurable quantity.

To circumvent this problem, we developed a two-stage cryogenic amplifier, which

is positioned inside the refrigerator within 1 mm of our samples. The basic idea

behind this amplifier is that it operates as an impedance matcher with a small gain

[29]. With a low capacitance input, it drives high capacitance cables. We build the

amplifier from commercially available high electron mobility transistors (HEMT) as

shown on Figure 2-10. The signal from the sample Csample is fed into transistor T1

and then further amplified by T3. The output of T3 is connected via a long cable to

the input of the lock-in amplifier, which we position right on the top of the fridge.

Since most of our experiment is conducted at high magnetic fields, the amplifier is

mounted in a fashion which leaves its characteristics practically unaffected by an

applied magnetic field.

To obtain high sensitivity, care is taken to further minimize the input capacitance

Cin of the amplifier. First, the HEMTs chosen for the amplifier have the smallest
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input capacitance. For an unpackaged transistor Cin ≈ 1pF . We further reduce it by

cleaving the transistors. The measurement transistor (T1 in the diagram) is actually

only one third of a chip we buy. Second, we use another cleaved transistor (T2) and

not a resistor chip to set the gate bias VS2 on the T1. This is because the thin film

chip resistors available have appreciable capacitance between their terminals. The

resulting input capacitance of our setup Cin ≈ 0.3pF .

Another problem that obstructs our measurements is the existence of a large stray

capacitance Cstray in parallel with Csample. During the fabrication process, we try

to minimize Cstray by minimizing the direct capacitance between the contact layer

and the top gate. Nevertheless, because of the minuscule dimensions of our chip

layout there exists a Cstray ≈ 150fF , which is three orders of magnitude larger than

the capacitance changes we measure. This extra capacitance adds a large, though

constant, component to our signal at the input of the amplifier, thus significantly

degrading the signal to noise ratio. However, exactly because this component is

constant, we can eliminate it by using a bridge technique [29, 30]. We introduce

another fixed capacitance into the circuit Cstandard and apply an ac voltage to it.

This voltage Vnull is at the excitation frequency and exactly 1800 degrees out of phase

with the excitation Vexc. The large signal due to Cstray is nulled by adjusting the

nulling voltage Vnull on Cstandard.

The use of a two-stage circuit is advantageous in attaining larger gain from the

amplifier. On one hand, the gain of the amplifier increases as we pinch off the tran-

sistors. On other hand, the output resistance also increases with a pinch off. A huge

capacitive load on our amplifier Ccable = 300pF imposes an upper boundary on the

output resistance:

Rout ≤ Zload =
1

jωCcable

≈ 1KOhm (2.4)

The two-stage arrangement allows us to close the first transistor T1 significantly,

because it does not drive a large load; and to pass more drain current through T3

while leaving in more open state. This way gain is achieved on the first stage of

amplification and the second stage actually drives the load operating around unity
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gain. The 100pF capacitor C13 between the two transistors has negligible impedance

for our operation frequency. It just separates dc voltages between T1 and T3 circuits.

Finally, let us mention two empirical rules that we follow to improve the signal

to noise ratio. For the transistors that we use, there exists yet another observed

limitation: the input noise of our transistor increases drastically when it dissipates

more then 5µW of power. So we keep the power dissipated by each T1 and T3 under

5µW . Also to reduce 1/f noise we operate at the frequency of f = 600kHz. Given

our load of Ccable = 300pF , the maximal gain of 10 is achieved for f < 50KHz and

at f = 600kHz the gain is only about 4. However, the noise decreases with frequency

as well and we find that f = 600kHz to be optimal for the best signal to noise ratio

for our amplifier.

To summarize, we succeeded in implementing an amplifier with a low input ca-

pacitance of Cin ≈ 0.3pF , an input noise of ≈ 10nV/
√

Hz, and an amplification of

around 10 and an output impedance of Rout = 1KOhm. This translates into charge

sensitivity of 0.01e/
√

Hz.

2.3.3 Data Acquisition

The resistors RD1 and RD3 are used to set up source- drain current through the

transistors T1 and T3. Both of the resistors cooled to helium temperatures to diminish

Johnson noise. The gates of both transistors T1 and T3 are biased by VS2 and VG3

correspondingly (see Figure 2-10). While a thin film resistor RG3 is used to bias the

transistor T3, the transistor T1 is biased through another transistor T2. To ensure

that our setup is sensitive to electron tunneling between the contact layer and the

dot in synchrony with the ac excitation we deliberately choose the biasing resistors

to be much greater than the transistor’s input impedances:

Rbias À 1

ωexcCin

(2.5)

For our excitation frequency of fexc = 600KHz, a value of RG3 = 10MOhm satisfies

this requirement. Since the gate bias for the transistor T1 is established through the
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Figure 2-11: Experimentally measure capacitance trace as a function of the gate bias Vg. Each
peak corresponds to an electron addition to the double dot described in section 2.2.4. Two peaks of
double height actually occur because of simultaneous but independent additions to each dot [34].

transistor T2, we pinch T2 off by VG2, so that its source-drain resistance is much

larger than 10 MOhm.

Once the transistors are biased and the stray capacitance is nulled off, we monitor

the off-balance capacitance signal while slowly sweeping the top gate bias across

our samples. The resulting capacitance trace is shown on Figure 2-11. Each peak

corresponds to the addition of one electron to the quantum dot. The validity of this

picture has been verified as explained in references [29, 30, 49].

2.4 Advantages of Vertical Structures

Sections 2.3 and 2.2 establishes our ability to study electron additions to vertical quan-

tum dots of various sizes and geometries. These dots are called vertical dots because
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electron transfer occurs vertically and not in the plane of the two-dimensional system.

In two aspects our dot are beneficial over the more traditional lateral structures [11].

In general, quantum dots provide convenient test devices for studying the quantum

mechanics of coherent, interacting charged systems. But only our system permits vari-

ation of electron density, a critically important parameter that changes the effective

strength of electron interactions. We note that since the Fermi energy EF ∝ n in two

dimensions and the electron interaction energy Eee ∝ n1/2, the ratio EF /Eee ∝ n−1/2.

Therefore, the lower the electron density, the greater the role of electron-electron

interaction.

Also the traditional transport techniques for studying lateral quantum dots [11]

sense primarily delocalized electronic states. A possible exception is transport stud-

ies in vertical structures [28, 50, 51], but again these do not permit variation of

electron density . Our method of Single Electron Capacitance Spectroscopy (SECS)

has demonstrated the capability of probing both localized and delocalized states of

electrons. Furthermore, this method allows us to study 2D dots of various sizes and

geometries.

These two principal advantages of our samples and technique result in a wealth

of exciting experimental finding [29, 31, 32, 33, 34], which we will describe in the

following chapters.
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Chapter 3

Detailed Study of Single Vertical

Quantum Dots.

This chapter is devoted to a historical overview of previous experiments conducted

in our group on vertical quantum dots. The results of of these early studies are what

motivated us to produce the two experiments [33, 34] presented in the next chapters.

3.1 Early Observations

The first observation of a capacitance signal resulting from single electron tunneling

into discrete quantum levels of a quantum dot was reported in the pioneering work by

Ashoori [29]. The wafer structure and the fabrication procedure were similar to that

described in section 2.2.2. An earlier version of our cryogenic amplifier (see section

2.3) was used in these measurements. A schematic of the experimental setup is shown

in Figure 3-1. The dot is arranged between two plates of a parallel plate capacitor.

Electron may tunnel back and forth between the dot and the bottom plate as indi-

cated. A magnetic field is applied along vertical arrows. The experiments consist of

monitoring the capacitance signal resulting from tunneling of signal electrons from

the metallic contact layer to the levels in the dot as we scan the gate bias Vg: a poten-

tial applied across the plates of the capacitor. (see section 2.3). Charge transfer only

occurs for bias voltages Vg at which a quantum level resonates with the Fermi energy
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of the contact layer. This creates a sequence of distinct capacitance peaks whose bias

position can be directly converted to an energy scale for the dot [29, 30]. For the first

time the ground state energy in a quantum dot has been measured and followed as a

function of magnetic field for an arbitrary number of electrons. Particularly striking

is the spectra of dots with low electron occupancy, i.e. dots that contain low electron

density.

Dots of two sizes were studied. The top circular gate used to define the smaller

dot was 350nm in diameter, while the larger dot was defined by a 1µm disk. Two

important and somewhat dissimilar results have been obtained.

The experimental spectra of small dots [31, 52] shows electronic states well sepa-

rated by Coulomb blockade. The spectra reproduce many features of a simple non-

interacting electron model with an added fixed charging energy [53, 54]. In other

words, the first few electrons are shown simply to fill single particle states of a

roughly parabolic confinement potential. In detailed observations deviations due to

electron-electron interactions are apparent. First, the exchange interaction induces

a two-electron singlet-triplet transition. Second, self-consistency of the confinement

potential causes the dot to assume a two-dimentional character, and features develop

in high magnetic field which are attributed to quantum Hall regime.

On the contrary, the spectra of large dots [29, 30] appears entirely different. Low

energy spectra consist of randomly spaced discrete electronic states. The analysis

performed in the paper [29] shows that such energy spacing cannot be caused by

lateral confinement. Instead, potential fluctuation in the quantum well must create

local minima, which localize electron puddles. The most intriguing feature in the

spectra is a presence of “paired” electron additions. In several cases at zero magnetic

field, two electrons enter the well at the same gate bias. Usually, electrons avoid

entering the same potential minimum due to electron repulsion (Coulomb blockade).

The experiments observe the reverse. The fact that this phenomenon is observed in

many low lying levels suggests a possible physical mechanism.
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n+ contact layer

top gate
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B

Vg

Figure 3-1: Schematic of vertical dot samples. The dot is arranged between two plates of a
parallel plate capacitor. Electron may tunnel back and forth between the dot and the bottom plate
as indicated. A magnetic field is applied along vertical arrows.
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3.2 Periodic and Aperiodic Bunching in the Addi-

tion Spectra of Quantum Dots

The early observation of the profound violation of Coulomb blockade led to a system-

atic study of vertical dots of different sizes and densities [32], which is presented in

the rest of this chapter. Eight individual circular vertical dots defined as described in

section 2.2.2 were studied. The lithographical diameters of the top gate ranged from

0.2 µm to 1.6 µm.

It was found that in dots with lithographic diameters larger than 0.4 µm contain-

ing small numbers of electrons, electron additions are sometimes grouped in bunches

comprising from 2 to 6 electrons. The exact pairing seen previously [29, 30] is ap-

parently a limiting case of this more general tendency. Surprisingly, in dots with

diameters of 0.4-0.5 µm, the bunching occurs periodically with electron number. Ap-

proximately every fifth electron addition peak pairs with a neighboring peak. The

details of the addition spectra yield critical clues about the nature of the bunching.

As the electron density is increased in dots of all sizes, the pairing eventually

ceases, and a periodic Coulomb blockade spectrum develops. However, application of

magnetic field causes the pairing effect to reappear thus creating a boundary between

periodic and “paired” part of the spectra. The boundary for the onset of the bunching

is remarkably similar for all dots in which bunches are observed, regardless of their

size.

We begin with very thorough consideration of an addition spectrum of one par-

ticular dot that shows periodic “paired” electron additions. Then, we generalize our

finding by discussing the condition under which these phenomena occur. We will show

that these suggest a relation between electron localization and the pairing phenomena

[39]. Finally, we will consider how this suggestion can be tested.
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Figure 3-2: Experimental capacitance trace. Peaks in the capacitance occur at gate voltages for
single electron additions to the quantum dot. The peaks are spaced rather randomly and many
closely spaced electron addition are seen. Some are marked by stars.
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3.2.1 Large Dot Spectra in Zero Magnetic Field

Figure 3-2 displays the electron addition spectrum at zero magnetic field for a dot of

500 nm lithographic diameter. For gate biases below −500 mV, the quantum dot is

empty. Peaks in the capacitance occur at gate voltages for single electron additions

to the quantum dot[29]. The peaks are spaced rather randomly and many closely

spaced electron addition are seen. They are marked on the figure. Figure 3-3 shows

another part of the same spectrum for higher gate biases Vg. Some of the peaks shown

are of double height indicating the tunneling of two electrons in the dot at the same

gate voltage. Remarkably, pairing of electron additions occurs nearly periodically.

For even higher values of the gate bias, the spectrum evolves into a nearly periodic

set of peaks, as is typical for Coulomb blockade.

Altogether, we can distinctly resolve about 600 electron additions in this dot. The

gate voltage scale can be directly converted to an energy scale ∆E = 1/η∆Vg with

the lever-arm 1/η∼0.5 for these structures determined from the geometry of the dot

as described in[29] (see also definition of η on Figure 2-1). The gate voltage position

of the Nth capacitance peak, when multiplied by the lever arm, directly measures the

chemical potential µN of the dot containing N electrons [14].

Fourier analysis of the spectrum clearly illustrates its evolution with the gate bias

Vg. Figure 3-4 shows the Fourier transform of the measured capacitance for successive

gate voltage intervals of equal length. The position of the Fourier transform peak

reflects the number of electron additions per gate voltage interval. For more positive

values of Vg (bottom traces), only a single dominant frequency component is present

in the spectrum. As the gate bias is made more negative, the position of the Fourier

transform peak shifts towards lower electron counts. In other words, for more negative

gate bias fewer electrons are added in a gate voltage interval. This reflects a decrease

in the gate capacitance Cg due to lateral contraction of the electron droplet. At

voltages more negative than −400 mV, the single peak evolves into a broad low

frequency spectrum. The broadening indicates that the gate voltage spacings between

electron additions become uneven.
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Figure 3-3: Another capacitance trace for higher gate biases Vg. Some of the peaks shown are
of double height indicating the tunneling of two electrons in the dot at the same gate voltage.
Remarkably, pairing of electron additions occurs nearly periodically.
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Figure 3-4: Fourier transform of the measured capacitance for successive gate voltage intervals of
equal length. The position of the Fourier transform peak reflects the number of electron additions
per gate voltage interval. The peak positions can be recalculated into the area of the dot (see text).
The resulting area scale is shown on the top axis.
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The peak positions in Figure 3-4 can be recalculated into the area of the dot by

the following method. The position of the Fourier peak give us the mean spacing

between the capacitance peaks in the gate voltage ∆Vg. This spacing, in turn, is

inversely proportional to the gate capacitance: ∆Vg = e/Cg. Assuming a simple

parallel plate capacitor model for the gate-dot capacitance, we assess the dot area.

The resulting area scale is shown on the top axis. Another independent way to

determine the size of the dot from magnetic field position of quantum Hall features

in the spectrum will be presented in the next section.

3.2.2 Evolution of the Spectra in Magnetic Field

The evolution with magnetic field of a portion of the electron addition spectrum

is shown in Figure 3-5. The grayscale map displays the first 150 additions, with

capacitance peaks visible as black traces. Examination of the bottom of Fig 3-5 shows

that the first 7 electrons enter the dot at widely spaced voltages. They may enter

into a single potential minimum or minima spaced closely enough that the Coulomb

repulsion between the sites is sufficient to keep the peaks widely spaced. Beyond the

7th electron trace, something extraordinary occurs. Three electrons enter the dot in

very rapid succession in gate voltage over the full range of magnetic fields. The next

two electrons also join in a bunch (pair). For higher electron occupancy (N), other

bunches can be seen. We note that the experiment shows no hysteretic effects. The

bunching is a phenomenon which occurs in a dot in equilibrium with its surroundings.

After about 40 electrons are added to the dot, the bunching develops into a peri-

odic pattern, with one bunch appearing for each 4-6 electrons added to the dot. As

N is increased beyond about 80, the bunching ceases for zero magnetic field. Instead,

the electron additions occur with nearly perfect periodicity, as is typical of Coulomb

blockade. However, for nonzero magnetic field strengths, the bunching phenomenon

returns. Bunches again occur periodically in gate voltage, and the period is about

the same as that for the zero field bunches. A zoom-in of this behavior is shown

in Fig 3-6. The onset of bunching shifts to larger magnetic fields with increasing

concentration, and the bunches are no longer observable at fields of up to 13 Tesla
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for more than about 200 electrons in the dot.

There is a region devoid of electron additions in the spectrum on both sides of

any bunch. The mean interval between electron additions hence remains the same on

a larger scale, even though individual traces have bunched. This is clearly noticeable

for small N. At large N, Figure 3-6 reveals that the spacing between the non-bunched

additions at nonzero magnetic field is larger than the spacing at zero field where the

bunching phenomenon is not present.

Certain features, which develop in the spectrum at large electron number N and

at high magnetic fields, can be attributed to Landau quantization in two dimensional

electron system [31, 52]. Hartree calculations [55] shows that the bottom of the dot’s

confinement potential is “flattened” considerably by the presence of electrons, and in

the interior can be considered as a small two-dimensional (2D) system. The chemical

potential of a 2D system exhibits well-known drops as Landau level depopulate in the

magnetic field.

Since the gate voltage position of the capacitance peak reflects the chemical po-

tential of the dot, the behavior of each electron trace can be described roughly as

follows. The magnetic field at which all electrons fall into the lowest Landau level,

ν=2, can be readily identified as a maximum in the traces at around B ≈ 2T [31, 52].

As in two-dimensional systems, the chemical potential peaks just as higher Landau

levels depopulate completely. A line marked as ν = 2 on Figure 3-5 is drawn through

these maxima on each trace. Jumps in the traces at higher magnetic fields, where

both spin levels of the lowest Landau level are filled, are usually interpreted as single

electron spin-flips [54, 12]. The flatness of the traces around B=6 T demarcates total

spin polarization of the dot. We refer to this range as the vicinity of ν=1. For higher

fields, the traces rise nearly linearly with magnetic field.

The position of ν = 2 in the magnetic field provides another estimate of the dot

area. In a dot with flat-bottom potential, the area of the dot is related to the Landau

level filling fraction ν by A = N(hc/eBν). This estimate agrees very well with the

one obtained from the Fourier transform method.

The bunching phenomenon appears to be responsive to Landau quantization. Con-
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Figure 3-5: Grayscale image of the measured capacitance. Vertical scale - gate voltage (electron
density). Horizontal - magnetic field. One capacitance trace taken at B = 0 is shown. A line marked
ν = 2 is drawn through the maxima at each trace (see text). At low electron density many bunched
electron addition can be seen. Above the critical density n0 = 1×1011cm−2 the spectrum is periodic
at low fields. Note sharp boundary marked by an arrow. To the right of the boundary the bunched
additions develope a periodic pattern.
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Figure 3-6: Grayscale image of the measured capacitance. Zoom in into a part of spectra shown
on Figure 3-5. A line marked ν = 2 is drawn through the maxima at each trace. The boundary is
marked by an arrow. An asterisk denote a pair of bunched traces.
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sider the bunched pair of traces in Figure 3-6 denoted by an asterisk. These traces are

fairly representative of all of the other traces which appear as electron pairs. Starting

at some nonzero magnetic field the two traces are seen to stick together but then they

split as the field approaches that which yields ν=1. Passing through ν=1, the lower

trace of the bunched pair splits from the trace above it only to join with the trace

below it.

3.2.3 Tunneling Rates

The bunching phenomenon is reflected in the rate at which electrons tunnel into the

dot. At zero magnetic field, the rate of electron tunneling between the n+ substrate

and the quantum well is about 5 MHz. Measurements at a much lower frequency of

f = 200 KHz are sensitive only to the tunneling resistance if the tunneling is strongly

suppressed by electrons correlations within the dot[31, 12]. At very low temperatures

(T < 0.1K) the tunneling rate drops substantially in particular regions of magnetic

field and electron occupancy.

Figure 3-7 shows a measurement of the addition spectrum of the same dot at base

temperature T = 50 mK after thermal cycling up to room temperature. The details

of the addition spectrum of the dot are modified, but the overall bunching behavior

remains qualitatively unchanged. For low N, shown on the bottom part of Figure

3-7, the contrast in all electron traces is the same over the entire range of magnetic

field, indicating that the electron tunneling rate is much larger than the measurement

frequency. The middle segment of Figure 3-7 displays the capacitance spectrum in a

range of larger N (75-95 electrons in the dot). Notice here that some of the traces

extinguish as the magnetic field increases. As the peaks diminish in strength, the

phase of the electron tunneling signal lags relative to the ac excitation [31]. This

detectable decay of the tunneling rates begins in the vicinity of ν=1, for sufficiently

large number of electrons in the dot.

The only traces observable at the highest magnetic field of B=13 T in Figure

3-7 extend from paired traces. Examination of the intensity and phase of these

unextinguished traces shows that they typically result from only a single electron
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rather than two electrons tunneling. We note that the dc bias in the experiment is

adjusted very slowly so that the electron occupancy in the dot changes even though

peaks are not seen in the capacitance experiment. Finally, at higher N (Figure 3-7,

upper part), the bunching disappears, and all traces extinguish equally.

3.2.4 Universality of the Bunching Phenomena

The bunching emerges as a universal behavior. We have seen the bunches in all the

investigated quantum dots with lithographic diameters greater than 0.4 µm. The

bunching is absent in the spectra of smaller dots [31, 28]. The appearance of the

bunching in larger dot is governed not by number of electrons but the electron density

in the dots.

At zero field, the bunching is observed below a critical electron density (n0 =

1× 1011cm−2 in all of our samples). With increasing density n, the spacing between

peaks becomes regular at zero magnetic field. We pbserve that application of a high

perpendicular magnetic field increases n0 linearly, creating a sharp boundary between

periodic and “paired” (or “bunched”) parts of the addition spectrum. The boundary

for the onset of the bunching is remarkably similar for all dots in which bunches are

observed, regardless of their size. This boundary moves to higher magnetic fields as

the average electron density (note, not N) in the dot is increased roughly according

to the linear relation:

n0 = (1 + 0.1×B[Tesla])× 1011cm−2. (3.1)

The nearly periodic bunching (pairing) pattern is observed for dots created with

lithographic diameters of about 0.5 µm. For larger dots, the bunches appear to

occur randomly with gate voltage rather than periodically. The details of the random

bunching pattern vary with thermal cycling of the sample to room temperature.

In sharp contrast, the periodic bunching behavior remains qualitatively unchanged.

The same 5-electron period is consistently detected for different thermal cycling and

different samples of the same size.
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Figure 3-7: Segments of the addition spectra showing difference in the tunneling rates.
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Our finding are summarized in an approximate phase diagram shown on Figure 3-

8. Each dashed curve represents the evolution of one measured quantum dot sample.

As we increase the electron density ns within the dot, the lateral diameter of the

electron pool d also grows. The diameter d is determined from the average spacing

between addition peaks as shown in section 3.2.1. The bunching is absent either for

very small dots at arbitrary electron density or at sufficiently large electron density

in arbitrary large dots (nonshaded area). The shaded area demarcates conditions

under which the bunching occurs. The dark shaded area corresponds to the periodic

bunching. The density limit at zero magnetic field is shown by a horizontal line.

We believe that pairs of electrons in the quantum dot, previously observed by

Ashoori [29] and reviewed in section 3.1, are a special case of the bunches in the

regime of electrons strongly localized within a large (1µm lithographic diameter) dot.

In dots of similar size, we have seen more examples of bunches with traces of two

and sometimes three electrons that exactly or nearly overlap over a range of magnetic

fields. In general, paired traces from dots with smaller lithographic diameters do not

coincide exactly.

3.3 Why is it that the Pairing is Related to Local-

ization?

Taken together, our experimental findings suggest a relation between electron local-

ization and the pairing phenomena [39]: the pairing occurs once the electron droplet

within the dot splits into several fragments.

First, small dots do not display the bunching effect. We have determined (see

Chapter 5) that dots with lithographical dimensions less then 350 nm have smooth

circular symmetric confinement, and consist of a one electron puddle. Second, in

larger dots, the bunching appears only at low densities when distinct electron puddles

may exist. The size of large dots significantly exceeds the effective screening length

(the distance to the top gate), and the direct Coulomb repulsion between different
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Figure 3-9: Diagram for electron tunneling in the 2D system.

electron droplets may be strongly suppressed. The addition of an electron in one

region may not inhibit the addition of a second electron in a remote location. Third,

the application of high magnetic fields restores the bunching phenomena at higher

densities. The strong magnetic field squeezes the electron wavefunction and may

facilitate trapping of electrons in local minima of a disorder potential.

Finally, the contrast observed in the tunneling rate is consistent with the idea that

the two bunched electrons enter into spatially different regions within the dot. The

drop of the tunneling rate at high fields illustrated on Figure 3-7 can be considered as

a special case of the Coulomb gap observed for larger systems [56, 57, 58, 59, 60]. The

origin of tunneling suppression can be understood semiclassically (Figure 3-9). The

tunneling process suddenly introduces one more electron into a dot thereby creating

a local density disturbance. The effective tunneling rate depends on the relaxation

rate of this disturbance. In simple words, a “newcomer” needs to push it’s neighbors

around to minimize the Coulomb energy. The high magnetic field causes electrons to
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move in circles and slows the relaxation rate. The higher tunneling rate observed for

one trace in each bunch can be explained if the electron is added into the edge of the

dot. This electron has fewer and more distant neighbors compared with an electron

introduced into the bulk of the dot.

Localization in a dot is caused either by a fluctuating potential or may arise

intrinsically within a single dot due to interactions. The reproducibility of the periodic

bunching pattern in several different dots and upon different thermal cycling of the

same dot cannot be ascribed to a peculiarity of the disorder potential.

We hypothesized that disorder and electron-electron interactions within the low-

density droplet split it into two or more spatially separate droplets, and the pairing

arises once this localization occurs. We have produced two experiments to study

this localization-delocalization transition in a controlled fashion. One recently estab-

lished the existence of electronic states localized at the dot’s periphery and arising at

densities just below the critical density n0 [33]. The other convincingly demostrated

that a high magnetic field abruptly splits a low-density electron droplet placed in a

disorder potential into smaller fragments, and the paired electron additions to the

dot result from an unexplained cancellation of electron repulsion between electrons

in these fragments [34]. We will describe these two experiments in Chapters 4 and 5.

3.4 Theories Proposed

Our experiments have triggered intensive theoretical efforts. Despite of several theo-

ries that were put forward in recent years [61, 62, 63, 64, 65, 66] to explain the origin

of the pairing phenomena, it is not yet understood. As a final point in this chapter

we will briefly mention several of the proposed models.

Wan, Ortiz and Phillips [61] suggested an explanation based on the lattice po-

laronic mechanism. The authors showed that since GaAs is a weakly polar semi-

conductor, coupling to optical phonons is sufficiently strong to mediate a negative-U

pairing state. Raikh and Glazman [62] demostrated that electron-electron repulsion,

screened by a close metallic gate, can lead to electron pairing for specially arranged
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compact clusters of localized states in a disordered dot. Both models predict a dra-

matic suppression of the tunneling rate as soon as two electron are joined into a pair,

since both electrons must be added into the dot in a coherent fashion. Having studied

large number of pairs in the frequency range 50 KHz − 1 MHz, we have never ob-

served a significant drop of the tunneling rate when the traces merge. This suggests

that the paired electrons tunnel into the dot independently. The data indicate that

filling one state of a pair has no effect on the energy of the other state in the pair.

Avishai, Berend and Berkovits [65] proposed a classical model in which a large

semiconductor quantum dot is viewed as a collection of metallic electron islands with

capacitive and inductive coupling amoung them. The model results in a peak spacing

distribution, which has a maximum at small spacing values. It can explain the occa-

sional occurence of couples or even triples of closely spaced Coulomb-blockade peaks,

as well as the qualitative behavior of peak positions with the magnetic field. While

this model explains some of our data, it does not address the principal issue: what is

the mechanism that splits a large dot into fragments? Furthermore, being a classical

model, it does not take into account electron interaction and, as a consequence, does

not give reasons for the appearance of the bunching only at low electron densities.

Another two classical models were presented by Koulakov and Shklovskii [63]

and Levitov [67]. Both models treat electrons as classical charges. The first theory

describes the addition spectra of a dot in which the density of electrons is small

and the external disorder is very weak, so that electrons in the dot from the Wigner

crystal. This type of dot is referred to as “the Wigner crystal island”. The electrons

are assumed to reside in a parabolic external confinement. Due to the crystalline

symmetry, the center of confinement can be situated at distinct positions with respect

to the crystal. With increasing electron number the center of the crystal periodically

hops from one such location to another. Calculations show that at the moment when

these rearrangements occur, several electrons can enter the dot simultaneously. In

our experimental conditions a dot can be thought of as a Wigner crystal island only

in the highest magnetic fields. Classical point charges cannot describe the electron

density at zero field.
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The calculations by Levitov [67] based on earlier work by Bedanov et al. [68]

showed that classical point charges in a confinement potential form a nearly triangular

lattice with significant lattice deformation only the dot edges. The edge electrons are

practically frozen and can move only along the perimeter. The radial displacements

for outer-shell electrons and for the inner ones differ by several orders of magnitude.

Levitov demostrated that, for a classical dot containing 50-150 electrons, 4 electrons

enter the delocalized center of the dot in succession, and the 5th enters the localized

circumference. While this model may explain the periodicity seen in our data and its

increasing prominence at large magnetic field, it still does not explain the pairing.

Only recently, and in fact just after our new localization experiments [33, 34] were

produced another theoretical work was published by Canali [66]. This work carries

out a full quantum mechanical calculation of the addition spectra of dots containing

a small number of particles in the limit of strong disorder and with a short range

Coulomb repulsion. Both these assumptions are justified for our experiments. The

background potential fluctuation are large: of the order of 5mV [29, 30]. The presence

of the top gate cuts off the Coulomb repulsion.

Canali’s simulations identify two different regimes where two succeessive electron

additions almost coincide. The first case takes place for small values of the direct

Coulomb repulsion but strong on-site repulsion, which favors the appearance of a

dense droplet with neither holes nor doubly occupied states. Both electrons in the

pair tunnel into the edges of the dot but in spatially distinct regions. The second

situation is much more interesting. It occurs in the strongly correlated regime, with

strong values of direct Coulomb interaction competing with the on-site repulsion and

the disorder. In this case, pairing is characterized by the formation of two puddles of

electrons. Doubly occupied states appear in between the two puddles, and one of the

two electrons tunnels into this state.

So far, this last calculation is the most realistic modelling of our dots. The closely

spaced electron additions in this regime bear strong similarities to the pairing seen

in our experiments. The published model does not include the effect of the magnetic

field, but a new series of calculations is under way.
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3.5 Summary

This chapter provides a historical overview of previous experiments conducted in our

group on vertical quantum dots. Our capacitive technique: Single Electron Capaci-

tance Spectroscopy (SECS) precisely measures the energies required to add individual

electrons to a quantum dots. We described the early SECS experiments and presented

a detailed study of individual circular quantum dots of various sizes and electron den-

sities.

We found that in dots with lithographic diameters larger than 0.4 µm containing

small numbers of electrons, electron additions are sometimes grouped in bunches

comprising several electrons. Surprisingly, in dots with diameters of 0.4-0.5 µm, the

bunching occurs periodically with electron number. Approximately every fifth electron

addition peak pairs with a neighboring peak.

As the electron density is increased in dots of all sizes, the pairing eventually

ceases, and a periodic Coulomb blockade spectrum develops. However, application

of magnetic field causes the pairing effect to reappear, thus, creating a boundary

between periodic and “paired” part of the spectra. The boundary for the onset of the

bunching is remarkably similar for all dots in which bunches are observed, regardless

of their size.

The details of the addition spectra yield critical clues about the nature of the

bunching. We hypothesized disorder and electron interactions within the low-density

droplet split it into two or more spatially separate droplets, and pairing arises once

this localization occurs. In next two chapters we will present two experiments [33, 34]

we produced to study this localization-delocalization transition in a controlled fashion.
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Chapter 4

Localization-Delocalization

Transition in Quantum Dots

Detailed study of the pairing phenomena in quantum dots presented in Chapter 3 led

us to conjecture a relationship between the pairing and localization in our dots. We

hypothesized that disorder and electron-electron interactions within the low-density

droplet split it into two or more spatially separate droplets, and pairing arises once

this localization occurs. This chapter describes the results of the first [33] of the

two experiments [33, 34] that we produced to study the localization-delocalization

transition in a controlled fashion.

Our technique precisely measures the energies required to add individual electrons

to a quantum dot. The spatial extent of electronic wavefunctions is probed by inves-

tigating the dependence of these energies on changes in the dot confining potential.

We find that for low electron densities, electrons occupy distinct spatial sites localized

within the dot. At higher densities, the electrons become delocalized, and all wave-

functions are spread over the full dot area. The transition occurs around the critical

electron density n0 = 1 × 1011cm−2, below which paired electron additions appear

(see section 3.2.4). For densities just below the critical density, our data establish the

existence of electronic states localized at the dot’s periphery. In the latter regime the

paired electron additions develop a periodic pattern. We convincingly demonstrate

that electrons in each pair are added to spatially separated regions within the dot: a
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localized periphery and delocalized inner core. Unexpectedly, some of the localized

electrons appear to bind with electrons in the dot center.

4.1 Added Electron: Where Does It Go?

The fabrication procedure for the samples used in this experiment is outline in section

2.2.3. Figure 4-1 depicts a schematic of the experimental setup. As before, we position

the dot inside a tunnel capacitor, which is formed by the n+ contact layer and the

top gate. Electrons may tunnel back and forth between the dot and the capacitor

bottom plate (n+ layer) as indicated in the figure. In this experiment, we added an

additional side gate that encircles the dot. Application of a negative voltage to this

side gate squeezes the dot and repells electrons from the edges.

In measuring the electron addition spectra of these dots, we first apply a large

negative potential to the top gate, Vt, repelling all the electrons from the quantum

dot. Then, we scan Vt towards more positive voltages, drawing the electrons back into

the dot one by one. To detect the electron additions we measure the ac capacitance

between the top gate and the contact layer at a frequency of 600 kHz. At Vt values

corresponding to the electron additions, an electron oscillates between the dot and

the contact responding to the small (about 80 µV ) ac voltage and increasing the

measured ac capacitance [29].

The electron addition energies are far less sensitive to the side gate potential than

to the top gate potential reflecting the difference in the geometrical capacitance. First,

only the fringing fields emerging from the side gate affect the dot. Second, this field

decays strongly, moving toward the interior of the dot because of the screening by the

bottom and top metal electrodes [69]. Moreover, because of this decay, the sensitivity

of a particular electronic state in the dot to changes in the side gate potential Vs

depends on the position of this state within the dot. The peripheral states are more

susceptible to changes in the voltage Vs than the states in the dot’s center.

Thus, the side gated samples allow us to determine where in the dot we actually

add an electron. It would be particularly interesting to use this new tool on dots that

70



n+ contact layer

top gate

side gate
B

Vt

dot Vs

Figure 4-1: Schematic of quantum dot structure with side gate and scheme for application of bias
voltages.
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exhibit the paired electron addition.

4.2 Probing Localization: Experimental Results

4.2.1 Localization in Zero Field

We study the electron addition spectrum at zero magnetic field for a dot of 500 nm

lithographic diameter. We choose to study a dot of this size because it shows the

periodic bunching for densities below n0 = 1× 1011cm−2 (see Chapter 3).

Capacitance traces (measured versus scanned Vt) taken for different values of the

side gate bias Vs are plotted together on the grayscale panel in Figure 4-2A. Each

dark trace represents a capacitance peak resulting from a single electron addition.

The evolution of the addition energies with Vs can be easily perceived this way. The

slope of a peak as a function of Vs effectively measures the probability for an electron

in the respective electronic state to reside at the periphery of the dot.

At small electron numbers (bottom of Figure 4-2A, the slope is small and varies

strongly from peak to peak. Note that the spacing in Vt also fluctuates strongly.

In our dots, the single-particle quantum level spacing is about 1/10th the charging

energy. Hence, the energy of spatial quantization cannot be the origin of the strong

fluctuations in the addition spectrum. The large fluctuations in peak spacing and

slope indicate that electrons are localized and interact weakly with each other. On

average, the slopes of traces increase with electron number and the spacing between

traces decreases.

As more electrons are added to the dot, the electron droplet expands laterally. This

increases the capacitance of the puddle to the top gate and results in a decrease in the

spacing as a function of Vt. The average lateral expansion also explains the increase

in the coupling to the side gate and, respectively, the increase of the slope. Above

a critical density n0 = 1× 1011cm−2 (about 100 electrons in this dot) corresponding

to the very top of the panel in Figure 4-2A, the slopes of all the electronic states

become equal within the experimental resolution. Note that for a perfectly metallic
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droplet where all electronic states are similarly spread over the area of the dot, one

expects equal slopes for all traces with Vs and precisely periodic electron additions

as a function of Vt (Coulomb Blockade). We conclude that above the critical density,

electrons in our dot are completely delocalized.

We now center our discussion on the intermediate range of electron density just

before the delocalization transition. For the gate biases Vt in the middle of Figure

4-2A, the traces can be separated into two distinct groups with respect to their

dependence on Vs. The presence of traces with very large slopes is the most noticeable

feature. The large capacitance to the side gate means that these states are mainly

localized at the edge of the electron puddle. Traces with small slopes originate from

electron additions to states with high probability density located near the dot center.

We label them as interior states. The distinctness of these two groups establishes that

the dot does indeed break-up into an isolated core and periphery regions: near the

delocalization transition, the last remaining localized states exist at the perimeter of

the dot.

While addition traces associated with the interior states are well separated in the

top gate bias Vt by Coulomb blockade, a localized “peripherial” trace can appear very

close to an “internal” trace. Closer examination of Figure 4-2C reveals direct cross-

ing between two families of traces. As one still expects Coulomb repulsion between

electrons in the two regions, the existence of levels that cross directly (rather than

anticross) is a surprise. This behavior corresponds to the pairing behavior described

in Chapter 3. At the direct crossings, two electrons enter the dot at the same top

gate voltage. The absence of Coulomb repulsion leading to the pairing effect is still

a mystery, but we now understand that the paired electrons enter isolated positions

within the dot.

Consider the last five localized states seen before the complete delocalization on

Figure 4-2B. They, themselves, appear with nearly perfect periodicity in the top bias

Vt. This means that for densities near the delocalization transition, four electrons

enter the delocalized center of the dot in succession and the fifth enters the localized

circumference. This observation is reproducible upon different thermal cycling and is
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Figure 4-2: (A) Greyscale panel of measured capacitance with dark lines denoting capacitance
peaks. Each peak corresponds to an electron addition to the dot. Top-gate voltage scale can be
converted to the addition energy scale by multiplying by 0.5 (lever-arm). Temperature, 50 mK.
(B)(C) Two zoom in to spectrum (A) (see text)
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Figure 4-3: Grayscale panels demonstrating the effect of magnetic field on the addition spectra.
The temperature, 300 mK. At zero field most traces have only small slopes, indicating that most
electrons are either delocalized throughout the dot or localized in the interior of the dot. As magnetic
field increases more states (dashes) appear with a steeper slope and are therefore confined to the dot
periphery. Magnetic field thus appears to enhance localization of electrons into interior or periphery
regions.
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consistent with the observation of the periodic bunching pattern under precisely the

same conditions in dots of similar sizes. In summary, Figure 4-2 allows us to conclude

that one of the electrons in the previously observed bunches is localized at the edge.

4.2.2 Effects of High Magnetic Fields

Application of a magnetic field perpendicular to the plane of the quantum dot strongly

affects the addition spectrum. Addition spectra at 300 mK from this region in another

quantum dot were taken at several values of applied magnetic field (Figure 4-3).

The general behavior of the addition spectrum as the dot evolves from localized to

metallic-like with increasing density appears qualitatively unchanged from the dot of

Figure 4-2. The traces arising from the remaining states localized at the dot edge are

indicated by tic marks in Figure 4-3.

The magnetic field breaks the regular metallic-like pattern of the addition spec-

trum and tends to localize electronic states at either the center or the periphery

of the dot. This is clearly evidenced by the emergence of additional traces with

large slope as the field strength is increased. Other traces display a diminished slope

at increased fields, indicating that they arise from electronic states that have be-

come localized near the center of the dot. The magnetic field effectively shifts the

localization-delocalization transition towards higher electron densities within the dot.

Again we would like to point out the similarity between localization and the

bunching phenomena. Chapter 3 demostrated that application of a high perpendic-

ular magnetic field increases the critical density below which the periodic bunching

is observed. Even though for high electron densities the pairing eventually ceases,

high magnetic fields restore the pairing effect thus creating a sharp boundary be-

tween periodic and “paired” part of the spectra. While it is difficult to quantitatively

investigate the effect of the magnetic field using our side gated samples (we have

three parameters to vary: Vt, Vs and B), we have designed another experiment that

permits thorough studies of the boundary [34, 40]. We will describe this experiment

in Chapter 5.

Finally, note that the traces at high fields are not always well separated as a

76



function of Vt, as the Coulomb repulsion between electrons would ordinarily suggest.

In fact, many traces appear “clumped”, similarly to the bunching of levels observed

in our previous experiments [32] (see Chapter 3).

4.2.3 Interaction Between Localized and Delocalized States

Figures 4-2 and 4-3 establish our ability to detect localization within the dot. We

now focus on the interaction between electronic states localized at the edge and the

center of the dot. Closer examination of Figure 4-2C reveals that upon increasing

Vt, traces from states localized at the periphery traverse traces from states localized

at the dot center. The splitting observed at these avoided crossings (anticrossings)

is a measure of the interaction between respective states. The anticrossing opens

because the presence of an electron in the lower state causes the addition energy of

the crossing state to move up due to hybridization and the Coulomb repulsion between

hybridized states. Very detailed calculations of the magnitude of the splitting, albeit

for a slightly different geometry can be found in references [70, 71, 72, 73].

The lowest of the edge localized (steep slope) states shown in Figure 4-2C hardly

appear to interact with interior electron states at all. More interesting are the edge

states that display noticeable interaction with other crossing states.

A typical trace from a periphery state displays anticrossings with all of the traces

that it traverses. The strength of the interactions fluctuates strongly over the range,

with the splitting values varying by a factor of five. Other localized states display

similar strong fluctuations of the splitting values. On average, the splittings are

smaller than the peak spacing in the range shown. At higher electron number, the

splittings grow to become comparable with the Coulomb blockade peak spacing, in-

dicating an increased interaction between crossing states. Surprisingly, some very

unusual anticrossing patterns can be seen here.

We zoom into the part of the addition spectrum immediately preceding the com-

plete disappearance of patterns of anticrossings associated with localized states (Fig-

ure 4-4C). To facilitate visualization, the image is skewed to compensate for the slope

of the internal states. Close examination of Figure 4-4C reveal a surprising feature:
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Figure 4-4: (A) Sketch of the expected form for an anticrossing considering quantum mechanical
and Coulomb interactions between electrons in different states. The chemical potential of (N+1)
electron state (left) is higher than or equal to the chemical potential of N electron state (right).
(B) Sketch of an experimentally observed anomalous anticrossing; the chemical potential of (N+1)
electron state is lower than the chemical potential of N electron state. In this case, the removal of a
periphery electron on the right hand side of the diagram raises the chemical potential of remaining
N electrons facilitating the removal of another electron in the interior. (C) Top part of the addition
spectrum from figure 4-2A skewed to level the traces of internal electrons. Some of the anomalous
anticrossings are denoted by circles. (D) Surface map zooming-in to the anomalous anticrossing
marked by an asterisk. The energy levels clearly demonstrate the tendency of states to ”stick”
together at the anticrossing.
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anticrossings fall in two categories schematically depicted in diagrams A and B. While

diagram A represents the expected behavior of two crossing quantum states, diagram

B is highly unusual.

Intriguingly, at some of the anticrossings, the addition energy for the N-electron

state after the anticrossing is higher than the addition energy for the (N+1)-electron

state before the anticrossing (diagram in Figure 4-4B). This looks as though the

removal of the edge electron (sloped line) from the system actually raises the chemical

potential, and correpondingly increases the addition energy for an internal electron

(horizontal line). We note that all the anticrossings at lower density seen on Figure

4-2 follow a more typical pattern of Figure 4-4A.

4.3 Localization Results from Electron Correlations

The pattern of the interaction at lower density is generally consistent with the assump-

tion that the localization of the periphery states is caused by strong fluctuations of

the background potential. As more electrons are added to the dot, the interior puddle

expands laterally and approaches a localized state at the periphery. This expansion

appears to increase the interaction between the crossing states. Further, one might

expect that the interaction strength should be sensitive to the particular electron

wavefunctions of the localized and delocalized states. These may vary strongly, pos-

sibly accounting for the large fluctuation in the observed interactions. Examining a

typical edge state (Figure 4-2C), we see that the values of the anticrossing fluctuate

strongly.

At higher electron density there are, however, a few features in the addition spec-

trum that appear inconsistent with the irregular single-particle localization by fluctu-

ating potential. First, the last six localized states seen before complete delocalization

(Figure 4-2B) appear with nearly perfect periodicity in electron number. This ob-

servation is reproducible upon different thermal cyclings and was observed on many

different quantum dots [32]. Second, the localized edge states disappear above a

critical density that is identical for all of our quantum dots. Both observations indi-
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cate that the segregation results from electron correlations in a low-density electron

droplet. In Chapter 3 we conjectured this hypothesis after having observed the peri-

odic bunching in the addition spectra of quantum dots [32]. The present experiment

visualizes directly the localized states confined to the perimeter of the dot.

A surprising observation is the unusual interaction between the edge localized and

the bulk states. For electron densities just below completer delocalization the values

of the splitting at the anticrossings between the states at the dot’s perimeter and the

core states become comparable with the spacings in Vt for electrons entering the core.

Therefore, the interaction cannot be considered as a weak perturbation for the initial

crossing states. Existence of the anticrossing pattern presented on Figure 4-4D makes

it evident that the removal of the edge electron from the system actually raises the

chemical potential and increases the energy to add an electron to the system. This

behavior suggests that there exists a mechanism for attraction between electrons

in the crossing states overcoming the usual Coulomb repulsion. Indeed, the clear

tendency for electron peaks to move closer to each other over an extended interval of

Vs is seen, implying a possible energetic benefit of the paired configuration.

4.4 Possible Physical Mechanisms for Localization

The exact physical mechanism for segregation into an interior puddle and periphery

localized states has yet to be determined. We observe segregation only at densities

below a critical density of n0 = 1 × 1011cm−2. The conventional density dependent

parameter that describes the interaction strength is

rs =
1

aB
√

πns

, (4.1)

where aB is the Bohr radius (about 100 Å in GaAs) and ns is the sheet electron

density. The critical density n0 corresponds to rs ≈ 1.8.

Strong electron correlation has been shown to induce liquid-to-solid transition in

diluted electron systems. According to Wigner [74], the potential energy gained due
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to the formation of solid, of the order of 1/rs, outweights the kinetic energy lost,

of the order of 1/r2
s , for sufficiently low density (larger rs). Monte Carlo [75] and

analytic calculation [76] of the pure system suggest that the solid-fluid transition

occurs near rs ≈ 37. However, impurities that are present in the system can facilitate

formation of a Wigner crystal, therefore shifting the transition to lower rs. While

there is no consensus on the exact value of critical rs for disordered systems, the

published figures of rs ≈ 7.5 [77, 78] and rs ≈ 4 [79, 80] are greater than rs ≈ 1.8

in our system. Also the values of rs ≈ 6 − 8 and rs ≈ 10 for the recently observed

metal-insulator transition for two-dimensional electrons in Si [3, 4] and holes in GaAs

[5, 6] are well above the critical rs in our samples.

However, our critical rs corresponds to the density range where Eisenstein ex-

perimentally observed negative compressibility in a two-dimesional electronic system

[81]. The physical essence of negative compressibility is an over-screening of a probe

electron by the correlated electron liquid. As a result, the chemical potential of the

entire system decreases with the addition of an extra electron. Recently, Levitov [67]

demonstrated that negative compressibility give rise to a significant spatial oscillation

of the density at the edge of an electron droplet. Whether such oscillations can result

in edge states localization remains unclear.

We have already mentioned in section 3.4 a recent theoretical work by Canali

[66] that supports our experimental finding. This work carries out a full quantum

mechanical calculation of the addition spectra of dots containing a small number of

particles in the limit of strong disorder and for a short range Coulomb repulsion. The

theory shows that strongly the correlated regime in a dot is characterized by formation

of two puddles of electrons. In this regime, two successive electron additions almost

coinside. Although these calculations are the most realistic of the proposed models

for our dots, it deals only with a very small number of electrons in a rectangular

dot (3 × 4 sites). It is not yet clear how to generalize these results to more realistic

geometries.
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4.5 Summary

In this Chapter, we described a new method to study localization in small low-density

electron puddles placed in a disorder potential. With our capacitive technique, we

precisely measured the addition spectra of quantum dots. To probe the spatial extent

of electron wavefunctions within our dots, we studied dependence on the addition

energies on changes in confinement potential. While electronic states localized near

the edge are the most sensitive to changes in the dot’s confinement, states residing

near the center of the dots are almost not perturbed at all. Thus, we were able to

differentiate between electronic states occupying spatially distinct regions within the

dots.

We found that for low electron densities, electrons occupy distinct spatial sites

localized within the dot. At higher densities, the electrons become delocalized, and

all wavefunctions are spread over the full dot area. The transition between two regimes

occurs around the critical density n0 = 1× 1011cm−2, which is identical for all of our

quantum dots. For densities just below complete delocalization, the last remaining

localized states exist at the perimeter of the dot. Unexpectedly, these electrons appear

to bind with electrons in the dot center. We realized that some features in the

addition spectrum appear inconsistent with the irregular single-particle localization

by fluctuating potential. This led us to conclude that the spatial separation obeserved

in our dots results from electron correlations in a low-density electron droplet.

While we did not investigate the effect of the magnetic field on the electron local-

ization in great detail, another experiment we produced addresses this issue. Chapter

5 presents the results of this new study.
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Chapter 5

Localization in Artificial Disorder:

Two Coupled Quantum Dots

Chapter 4 demonstrated that our quantum dots provide a convenient system for

studying electron localization on a microscopic scale. Unlike the traditional trans-

port spectroscopic tools for studying lateral quantum dots [11] that sense primarily

delocalized electronic states, our method of Single Electron Capacitance Spectroscopy

(SECS) [29] has demonstrated the capability of probing both localized and delocalized

states of electrons. Furthermore, this method allows us to study two-dimensional dots

of various sizes and over a broad range of electron densities, a critically important

parameter that changes the effective strength of electron interactions.

In quantum dot experiments in high-density dots, the Coulomb repulsion between

electrons largely sets the amount of energy required to add an additional electron

to the dot. This energy increases by a fixed amount with each electron added. An

external gate, capacitively coupled to the dot, can then be used to change the electron

number, and electron additions occur periodically in the gate voltage with a period

e/Cg, where Cg is the capacitance between the gate and the dot [14, 13].

In contrast, our prior SECS measurements presented, in Chapter 3, have shown

that the low-density regime appears entirely different. The addition spectrum of a dot

larger than 0.4µm in diameter and below a critical electron density (n0 = 1×1011cm−2

in all of our samples) is highly nonperiodic. It contains pairs and bunches: two or
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more successive electrons can enter the dot with nearly the same energy [29, 32]. The

paired electrons thus show almost no sign of repelling each other. Application of

a high perpendicular magnetic field increases n0 linearly, creating a sharp boundary

between periodic and “paired” parts of the addition spectrum [32]. We hypothesized

that, for densities below this boundary, disorder and electron-electron interactions

within the low-density droplet split it into two or more spatially separate droplets,

and pairing arises once this localization occurs.

We have produced two experiments [33, 34] to study this localization-delocalization

transition in a controlled fashion. One, described in Chapter 4, recently established

the existence of electronic states localized at the dot’s periphery and arising at den-

sities just below the critical density n0 [33]. In this Chapter we report the results of

a new approach [34] for studying localization in quantum dots.

We intentionally create a dot with an artificial “disorder” potential: a potential

profile containing two smooth minima separated by a barrier, as in the double dot

system described in section 2.2.4. Through analysis of addition spectra in magnetic

field, we distinguish between electrons localized in either of the two potential wells

or delocalized over the entire dot. Our studies conclusively demonstrate that under

precisely the same conditions for observation of the paired electron additions, a low-

density electron droplet inside the dot indeed splits up into smaller fragments. This

abrupt disintegration creates a sharp boundary between periodic and “paired” parts

of the addition spectra, with paired electrons entering into spatially distinct regions

within a dot. We also measure the remnant residual interaction between the frag-

ments. Surprisingly, it displays a nearly complete independence from the strength of

the applied field for fields larger than required for the localization transition. While

no theory exists explaining the observed transition or the pairing phenomenon, recent

numerical simulations display results similar to some of our data [66].
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5.1 How to Model a Disorder Potential

The fabrication procedure for the samples used in this experiment is outlined in

section 2.2.4. A schematic of the experimental setup is shown on Figure 5-1. The

dot is arranged between two plates of a tunnel capacitor, which is formed by the n+

contact layer and the top gate. Electrons may tunnel back and forth between the dot

and the capacitor bottom plate (n+ layer) as indicated in Figure 5-1. To create a

barrier within a dot, we pattern a top gate in the shape of a dumbbell.

This shape of the gate produces two small vertical dots laterally separated by a

small distance (Figure 5-1). The top gate controls the electron density of the entire

system. This geometry results in a double potential well with two valleys separated

by a saddle. By changing the top gate bias Vg, we gradually fill the double dot system

with electrons. At first electrons accumulate in two independent electron puddles, one

localized in each dot. The puddles grow laterally with increasing electron number and

eventually couple to each other. The coupling mixes states of one dot with those of the

other, and electrons start traversing the saddle point. When the two puddles finally

merge into a single large dot, the electron wave functions spread over the entire area

of the resulting large dot.

By varying lithographic dimensions, we control the height of the saddle and there-

fore the individual dot electron density at which merging occurs. We examine a num-

ber of samples to investigate a broad range of such densities: from two dots, each

containing a few localized electrons, up to densities n = 2.5 − 3.5 × 1011cm−2 in

each dot. Remarkably, as we will show below, the magnetic field strongly affects the

merging only of low-density (n ≈ 1− 2× 1011cm−2) electron puddles.

The measurements are carried out using the on-chip bridge circuit described in

Chapter 2. To register electron additions, we monitor the ac capacitive response

to a small (< 80µV ) ac excitation applied between the top gate and the contact

layer, while sweeping the dc top gate bias Vg. At Vg values corresponding to the

electron additions, an electron oscillates between the dot and the contact increasing

the measured ac capacitance [29, 30]. Since one top gate covers both individual
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Figure 5-1: Schematic of our double dot samples. The dots potential profile contains two minima
separated by a barrier. A single top gate controls the electron densities of the entire double dot
system.
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Figure 5-2: Experimentally measured capacitance trace as a function of the top gate bias. Each
peak corresponds to an electron addition to the double dot system. Two peaks of double height
actually occur because of simultaneous but independent additions to each dot.
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dots, an electron addition to either of the dots results in a peak in our capacitance

measurements. The resulting capacitance trace is shown on Figure 5-2. Each peak

corresponds to the addition of one electron to the quantum dot. Two peaks of double

height actually occur because of simultaneous but independent additions to each dot

[34].

To distinguish electrons added to one dot from those added to the other, we follow

the evolution of the addition spectrum with the perpendicular magnetic field. The

general behavior of the electron addition spectrum for a single dot in a magnetic field is

well known both for the case of few-electron droplets [31, 12, 28] and for many-electron

dots in the Quantum Hall regime [54, 82, 83]. Addition energies oscillate with the

field as electrons shift between different angular momentum states. The exact pattern

of those oscillations depends sensitively on the details of the confinement potential,

and serves as a “signature” of a particular dot. Although in our samples the two

dots are made to be nominally identical, the particular shapes of the confinement

potential of the two dots are slightly different due to disorder and imperfections in

the lithography process. Addition energies for the two dots thus depend differently on

the perpendicularly applied magnetic field, permitting us to associate each electron

addition with a particular dot.

Also, the analysis of the addition spectrum in the magnetic field allows us to

characterize the confinement potential of the system. In particular, we confirm that

the confinement potential consists of just two minima, as it was designed.

5.2 Addition spectrum of a small symmetric dot

Prior to presenting the real data from our complex double dot system, we describe

the addition spectra of each of its two components: individual small dots. In small

dots containing just a few electrons, both electron-electron interactions and quantum

confinement effects are comparable to the charging energy. Therefore, the spacings

between the Coulomb oscillation peaks become irregular [12, 13]. It turns out that

the addition spectra for a small dot in a perpendicular magnetic field can be well
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described within the constant interaction model for single particle states based on the

Darwin-Fock spectrum. The constant interaction model was first offered [53, 54] to

connect the addition spectra of quantum dots and well-known single particle spectra

for simple confining geometries. Here we present this simplest model for addition

spectra of a small symmetric dot, highlight the underlying physical principles, and

compare it to our data.

5.2.1 Constant Interaction Model for Single Particle States

The Coulomb blockade peak position in the gate bias Vg, when converted to the dot’s

energy scale, reflects the electrochemical potential of the dot:

µdot(N) = U(N)− U(N − 1), (5.1)

where U(N) is the total ground state energy for N electrons on the dot. This is, by

definition, the minimum energy for adding the Nth electron to the dot. Calculations

of U(N) and, therefore, µdot(N) for several electrons are difficult, especially in a

potential that is not exactly known.

However, a reasonable estimate for U(N) can be obtained with the help of two

simplifying assumptions. First, we assume that the quantum levels can be calculated

independently of the number of electrons on the dot. Second, we parametrize the

Coulomb repulsion among electrons in the dot, and between electrons in the dot

and those in the nearby environment by a capacitance C. We further assume that

C is independent of the number of electrons on the dot. In other words, we think

that electrons simply fill single particle states additionally separated by a constant

charging energy ∆Ec = e2/C. Then, the addition energy - the separation between

the two nearest Coulomb blockade peaks - is given by the following expression:

µdot(N + 1)− µdot(N) = (EN+1 − EN) + e2/C , (5.2)

where EN+1 and EN are sequential single particle states.
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Figure 5-3: The eigenstates Enl of the Schroedinger equation for a two dimensional parabolic po-
tential in the presence of a perpendicular magnetic field, known as Darwin-Fock states (see Equation
5.4). Thick line marks the 35th state.
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Single particle states are calculated easily only for a bare confinement potential of

the simplest symmetric shapes. In real systems, electrons present in the dot modify

the bare confinement potential significantly due to screening. The resulting potential

has a flattened bottom in the regions of nonzero electron densities [55]. For this

case, more rigorous selfconsistent calculations are required to determine the single

particle states [82, 38]. However, for low electron occupancy, these states can still be

justifiably derived just from the potential of an empty dot.

5.2.2 Single Particle States in Magnetic Field: Darwin-Fock

spectrum

For a circularly symmetric two dimensional confinement potential the quantum num-

bers for the single particle states are conveniently described by the radial quantum

number n = 0, 1, 2, ... and the angular momentum quantum number l = 0,±1,±2, ....

For a harmonic confinement potential V (r) = 1/2mω0r
2, the noninteracting Schroedinger

equation has the following analytic solution for the eigenenergies Enl:

Enl = (2n + |l|+ 1)h̄ω0 (5.3)

It follows from equation 5.3 that the Enl form degenerate sets of states, which are

separated by h̄ω0 from each other.

The Schroedinger equation for a two dimensional parabolic potential in the pres-

ence of a perpendicular magnetic field was first solved in 1928. The eigenenergies are

known as Darwin-Fock states [84, 85]:

Enl = (2n + |l|+ 1)h̄

√
1

4
ω2

c + ω2
0 −

1

2
lh̄ωc, (5.4)

where h̄ωc = h̄eB/m∗c is the cyclotron energy. Figure 5-3 shows the evolution of

Enl with the magnetic field calculated for h̄ω0 = 1.1meV . Spin is neglected so each

state is twofold degenerate. The degeneracies at B = 0 are lifted in the presence of a

magnetic field. Single particles energies with positive or negative angular momentum
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l shift to lower or higher energy, respectively.

Consider a dot which contains N electrons occupying the first N states. An

(N+1)th electron entering the dot always chooses the lowest available state. For

a different field range, a different eigenstate becomes the lowest available EN+1. As

an example, the evolution of 35th state is illustrated in Figure 5-3 (thick line). Ac-

cording to equation 5.2, the resulting addition energies oscillate with the field as

electrons shift between different angular momentum states.

Comparison of the very details of these oscillation to Darwin-Fock spectrum allows

us to characterize the confinement potential of the dot. But before we turn to the data,

we would like to describe the consequences of the spin degeneracy of the Darwin-Fock

states.

5.2.3 Even-Odd Asymmetry in Coulomb Blockade Spectra

The possible spin degeneracy of single particle states gives rise to several important

consequences that go under the name of “even-odd asymmetry” in Coulomb block-

ade oscillations. When each single particle state accommodates two electrons with

opposite spins, the energies for adding the Nth even and the (N+1)th odd electron

are different:

µdot(N)− µdot(N − 1) = e2/C for adding even N (5.5)

µdot(N + 1)− µdot(N) = (E(N/2)+1 − EN/2) + e2/C for adding odd (N + 1) (5.6)

An even Nth electron is added to the same quantum state EN/2 as the previous odd

electron occupies. According to our model, only the Coulomb repulsion contributes

to the addition energy. On other hand, the lowest available state for the next (again

odd numbered) (N+1)th electron is E(N/2)+1, which lies higher in energy. Thus, the

addition energy for the odd electrons are greater by: ∆ε = E(N/2)+1 − EN/2.

The above considerations remain valid as long as the single particle spacing ∆ε

is comparable to, or larger than the electron interaction energy Ec = e2/C. Also,
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variation in dot capacitance C with electron number and the resulting changes in

the charging energy Ec = e2/C should be smaller than ∆ε. In general, the relation

∆ε ≥ Ec holds better for smaller dots: the Coulomb energy Ec = e2/C scales inversely

with the dot’s size, while the quantum level spacing ∆ε scales inversely with the square

of the dot’s size. The magnitude of the changes in dot capacitance depend on the

experimental geometry and varies from one experimental setup to another.

The first result of even-odd asymmetry is that two consecutive peaks are closely

spaced if they correspond to the same spatial state, whereas a pair of peaks that

correspond to different spatial states are spaced more widely. And indeed, even-odd

asymmetry in the peak spacing has recently been reported [86, 87] in transport studies

of very small lateral dots. Larger dots display no even-odd spacing correlation (or

bimodal structure in the spacing distribution) neither at small [88, 89] nor at large

values of magnetic field [54, 82]. The ultimate appearance of even-odd asymmetry

in small dots is the recently observed Kondo effect: a formation of a Kondo singlet

state from the electron localized in the dot and electrons in a reservoir. It occurs

only when the number of electrons in the dot is odd, so that one spatial state is only

singly occupied [15, 16].

The second, and more general result is that the dependence of the addition energy

on some external parameter, such as the magnetic field, differs for even and odd

electrons. This holds even if large changes in dot capacitance destroy the asymmetry

in the peak spacings. The magnetic field does not significantly modify the average

density distribution and, consequently, the Coulomb contribution to the addition

energy Ec = e2/C [82, 38]. However, single particle states in two-dimensional dots

are strongly affected by the presence of the perpendicularly applied field (see section

5.2.2) and therefore, ∆ε = E(N/2)+1 − EN/2 changes considerably. This leads to the

field dependent addition energy for odd electrons (∆ε + e2/C), while that for even

electrons (e2/C) does not depend on the applied field.

The following argument helps to visualize our point. Generally addition energies

“wiggle” in the field. Section 5.2.2 connects these oscillation with shifts of the spatial

electron wavefunction between different angular momentum states. Consecutive odd
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and even Coulomb blockade peaks, which are originated from additions to the same

spatial state, show similar behavior in the magnetic field: they oscillate in phase,

maintaining the constant separation (or field independent addition energy). This

behavior was predicted [90] and observed in small vertical dots studied by Tarucha’s

group [28, 50, 51]. The spectra of our smallest dots exhibit similar features as we will

describe below.

Note that because of the small effective mass in GaAs, spin effects in a magnetic

field, such as Zeeman splitting, are an order of magnitude smaller than changes in

spatial energies. Thus we neglect spin effects in our model and assume each spatial

state to be two-fold degenerate. This assumption is valid in the field range considered

here.

5.2.4 Our Data from a Small Dot

To summarize, addition spectra for small dots in a perpendicular magnetic field can

be well described within the constant interaction model for single particle states based

on the Darwin-Fock spectrum. The model predicts two main features of the spectra:

oscillatory behavior of addition energies in the field and odd-even pairs.

Figure 5-4 show an example of the magnetic field evolution of four consecutive

peaks for one of our small dots. Electron additions are numbered in Figure 5-4.

“Wiggles” originating from the crossing of different angular momentum states are

clearly seen on the picture. While the separation between traces 5 and 6 is field

independent, the spacing between traces 6 and 7 depends strongly on the magnetic

field. It is evident that addition traces 5 and 6 oscillate as a pair. The next two:

traces 7 and 8 are also paired. Each of these pairs corresponds to filling the one

spatial state.

We observe the behavior shown on Figure 5-4 in all of our dots with lithographic

diameter smaller than 350 µm. The fact that a simple model derived for a parabolic

potential describes our data extremely well signifies that the potential in our small dot

is rather smooth. In other words, it is not affected by disorder and it consist of a single

smooth minimum. As we described in Chapter 3, the spectrum changes dramatically
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Figure 5-4: Magnetic field evolution of four consecutive peaks for one of our small dots. Electron
additions are numbered. “Wiggles” originating from the crossing of different angular momentum
states are clearly seen on the picture. While the separation between traces 5 and 6 is field indepen-
dent, the spacing between traces 6 and 7 depends strongly on the magnetic field. Addition traces 5
and 6 (7 and 8) oscillate as a pair. Each of these pairs corresponds to filling the one spatial state.
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Figure 5-5: Magnetic field dependence of the first ten single-particle energy level for a circular
dot with δ = 1, (a), and for elliptical dots with δ = 1.5, 2, 3, 2, (b) to (d).For a circular dot with
δ = 1 and the δ = 3.2 ellipse, the quantum numbers (n, l) and (nx, ny) are given. The spectrum
for a circular dot is in fact the Darwin-Fock spectrum. For elliptical dots the degeneracies of single
particle states at zero field are removed, and the up-moving states are shifted towards higher energies.
Figure is adopted from reference [50]
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for larger dots [29, 32]. We believe that in our larger dots the confinement potential

has a more complicated shape and may in fact consist of several local minima.

Careful examination of the spectra allows us to quantify the dot’s confinement

potential: we estimate its strength and ellipticity. Equation 5.4 for n = 0 and l = 0

gives us the energy of the first electronic state: E00 = h̄
√

1
4
ω2

c + ω2
0, where h̄ωc =

h̄eB/m∗c is the cyclotron energy. For every dot we fit the first addition trace to this

expression. We find that in our samples, 1.8 meV < h̄ω0 < 2.4 meV .

Addition spectra of elliptically deformed dots have been studied both theoretically

[90] and experimentally [50]. Modifications in the spectra due to deformations are

very subtle and the formalism introduced above can be applied to an elliptical dot as

well. The sequence of the single particle spectra on Figure 5-5 adopted from refer-

ence [50] illustrates progressive changes in the single particle spectra as confinement

potential V (x, y) = 1/2m(ωxx
2 + ωyy

2) becomes more asymmetric. The asymmetry

is characterized by the parameter δ = ωx/ωy. For a circular dot with δ = 1 and the

δ = 3.2 ellipse, the quantum numbers (n, l) and (nx, ny) are given. First, the de-

generacies of single particle states at zero field are removed. Second, the up-moving

states shift towards higher energies.

Consequently, while the first addition trace that shifts up with magnetic field for a

circular dot corresponds to addition of the fifth electron, in the δ = 3.2 ellipse only the

9th addition trace belongs to the up-moving traces. Using this approach, we found

that our dots are in fact elliptical with a parameter δ = ωx/ωy that ranges 1 < δ < 3.

The parameter ω0, with which we used to describe the confinement strength is the

geometrical mean of ωx and ωy: ω2
0 = ωxωy

5.2.5 Limitations of the Model

Finally we need to mention the limits to the applicability of the simple model. It

works well for strong confinement and a small number of electrons in the dot, but

for higher electron occupancies new features in the spectra develop, which can not be

accounted for within the framework of the single particle picture presented above.

The general oscillatory behavior of the spectra for larger electron numbers is

97



consistent with the single particle model except for the notable absence of spin de-

generacy in this high-density regime. This absence was first reported by McEuen et

al. in [54, 82] and studied in detail (albeit in small fields) by Marcus’ group [89].

The disappearance of the spin degeneracy with increasing density is an unanswered

question in the quantum dot community and is a subject of ongoing investigation in

our group.

Several modifications to the Darwin-Fock spectra due to direct Coulomb and

exchange interactions were studied experimentally and modelled by Tarucha’s group

[51, 28, 50]. Ultimately, any description of the addition spectra of real dots must go

beyond a system of noninteracting electrons confined by a two-dimensional harmonic

oscillator.

5.2.6 Conclusions

In this section we have shown that we intuitively understand the basics of the addition

spectra of our smallest dots. By employing a simple model, we can characterize the

confinement potential. Now, we possess all the tools needed to study how electrons fill

an artificial disorder potential: a potential profile of two small dots laterally separated

by a small distance.

5.3 Double Dot System

5.3.1 Two Potential Minima: Two Electron Puddles

A capacitance trace from our double dot system is shown on Figure 2. Each peak

corresponds to the addition of one electron to the quantum dot. Since one top gate

covers both individual dots, an electron addition to either of the dots results in a peak

in our capacitance measurements. In other words, two dots are connected in parallel.

Two peaks of double height actually occur because of simultaneous but independent

additions to each dot. To distinguish electrons added to one dot from those added to

the other, we follow the evolution of the addition spectrum with the perpendicular
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magnetic field.

Figure 5-6 shows the capacitance traces taken at different values of the magnetic

field and plotted together as a grayscale panel. Black denotes high capacitance. Each

successive trace corresponds to the energy for adding an electron to the double dot

system. The first addition trace (marked by a star)exhibits behavior typical of the

lowest electronic state in the parabolic potential E00 = h̄
√

1
4
ω2

c + ω2
0. The five traces

that follow the first one develop into an easily recognized Darwin-Fock family. The

seventh addition to the dot (marked by a star), however, does not fit into the sequence.

In fact, it looks similar to the very first addition trace. We interpret this trace as the

first electron addition to the second dot. Careful examination of the spectra reveals

many traces (all of them are marked by full circles on the Figure 5-6) that do not

belong to the first Darwin-Fock family. But they themselves form another Darwin-

Fock set. Thus, the entire spectrum shown appear as a superposition of two sets of

traces. Each set looks like the typical spectrum of a single small dot (see section 5.2).

Because such separation of the spectrum is possible, we conclude that our system

consists of just two smooth potential wells, each accomodating one electron droplet.

Incidental alignment of the ground states of the two droplets for some particular

values of the gate bias and the magnetic field may cause simultaneous but independent

electron additions to each individual dot. Indeed, multiple level crossings (some

marked by empty triangles on Figure 5-6) can be seen on the plot. At each crossing

point, the peak in the capacitance signal has double height, indicating an independent

addition of two electrons to the two-dot system. The exact coincidence of the peaks

suggests that capacitive coupling between two droplets is negligible.

The two observed Darwin-Fock patterns are similar, but not identical. This hap-

pens because the exact pattern of these oscillations depends sensitively on the details

of the confinement potential. The particular shapes of the confinement potential of

the two dots are slightly different due to disorder and imperfections in the lithography

process. This leads to slightly different oscillation pattern in the spectra and allows

us to associate each electron addition with a particular dot.
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Figure 5-6: Figure shows the capacitance traces taken at different values of the magnetic field
and plotted together as a grayscale panel. Black denotes high capacitance. Each successive trace
corresponds to the energy for adding an electron to the double dot system. The entire spectrum
shown appear as a superposition of two Darwin-Fock families of traces (traces belonging to one of
the two are marked by full cirles. Level crossings are marked by empty triangles. Stars denote first
electron addition to each of the two dots.
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Figure 5-7: The range of the addition spectrum, in which the initially separate dots display the
interaction is shown on the grayscale panel. At the bottom of the panel the addition traces can again
be separated into two sets. One trace of each of the two families is highlighted on the figure. On
top of the panel there is only single ladder of the periodic traces. Two arrows indicate on positions
of the ν = 2 maxima for the two dots.
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5.3.2 High-Density Electron Puddles Merge

By changing the top gate bias Vg, we gradually fill the double dot system with elec-

trons. Analysis of Figure 5-6 determines that at first electrons accumulate in two

independent electron puddles, one localized in each dot. As the puddles grow later-

ally with increasing electron number they eventually couple to each other. The range

of the addition spectrum, in which the initially separate dots display the interaction

is shown on the grayscale panel in Figure 5-7. The panel is built similarly to Figure

6 from the separate capacitance traces as a function of the top gate voltage.

At the bottom of the panel the addition traces can again be separated into two

sets. One trace of each of the two families is highlighted on the figure. The spec-

trum consists of two non-interacting ladders of oscillating traces with nearly perfect

periodicity of the traces within each ladder. The traces from different sets do not

display any detectable splitting while crossing one another. On the contrary, on top

of the panel there is only single ladder of the periodic traces. This indicates that the

two initially separate electron puddles have merged into a single one and the electron

wavefunctions are spread over the entire area of the resulting large dot.

The transition from two completely independent to a single puddle occurs over

a range of Vg ≈ 25 mV . The bias range at which the transition occurs does not

depend on the applied field. As the coupling mixes states of one dot with those of the

other, and electrons start traversing the barrier between the two wells. In this regime,

when the ground states of individual dots are aligned with each other, a finite tunnel

coupling splits the two aligned levels [70, 71, 72, 73]. Note the regular change in the

values of the splitting at the anti-crossings without any prominent fluctuations.

As we discussed in Chapter 3, the magnetic field at which all electrons fall into

the lowest Landau level, ν=2, can be readily identified by the position of a prominent

maximum in all of the traces [31, 52]. The gate voltage position of the capacitance

peak reflects the chemical potential of the dot. As in two-dimensional systems the

chemical potential of the dot peaks just as the higher Landau levels depopulate com-

pletely. Two arrows indicate on positions of these maxima for two dots. Jumps in
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the traces at higher magnetic fields, where both spin levels of the lowest Landau level

are filled, are usually interpreted as single electron spin-flips [54, 12].

This general oscillatory behavior is consistent with the single particle model pre-

sented in section 5.2 except for a notable absence of spin degeneracy in the high-

density regime, which we mentioned earlier.

The position of ν = 2 in the magnetic field provides an estimate of the dot density.

In a dot with a flat-bottom potential, the electron density of the dot is related to the

Landau level filling fraction ν by n = ν(eB/hc). We find that for the gate biases

Vg just below merging (at the bottom of the panel), the two electron puddles have

densities n1 = 2.4 × 1011cm−2 and n2 = 3.2 × 1011cm−2, correspondingly. As we

mentioned in a previous section 5.3.1, our dots have slightly different potentials,

which leads to the difference in the exact values of the electron density.

Figure 5-7 illustrates our ability to distinguish between electron localization in

either of the potential wells and those delocalized over the entire sample. We neither

expect nor observe any unusual behavior for this sample. Because the barrier is high,

electrons spill over it at the gate biases Vg that correspond to the high density in

individual dots: n = 2.5− 3.5× 1011cm−2. This density range translates into rs ≈ 1.

Therefore, for these densities the dots are essentially metallic: electron interactions

are weak. We did not detect any unusual behavior in our single dots at this density

range.

5.3.3 Low-Density Electron Puddles Merge and Break up

To investigate the merging of two low-density electron droplets we examine a different

sample with a lower barrier between the two potential wells. In sharp contrast to the

previous case, as we will show below, magnetic field strongly affects the merging of

low-density (n ≈ 1− 2× 1011cm−2) electron puddles.

A grayscale panel on Figure 5-8 presents the addition spectrum for a different

sample with a lower barrier. The panel is built from the separate capacitance traces

taken at different values of the magnetic field. Black denotes high capacitance. Each

successive black trace corresponds to the energy for adding an electron to the double
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dot system. The first electron enters the system at the gate bias Vg = −290 mV .

The figure does not show the low-density part of the spectrum (−290mV < Vg <

−140mV ). But it appears as a simple superposition of two different Dawrin-Fock

families of traces, which is similar to the spectrum shown in section 5.3.1. Because

such separation of the spectrum is possible, we conclude that up to Vg = −140mV

our system consists of two independent electron droplets. At much higher densities

(Vg > −45mV ) there is only one periodic Coulomb ladder, indicating that the initially

separate electron droplets have merged into a single one.

The transition between the two limits occurs over gate biases −140mV < Vg <

−45mV , depending on the strength of the applied magnetic field. At zero field, the

merging occurs in an interval ∆Vg = 25mV wide centered around Vg = −125mV .

The gate bias Vg = −125mV corresponds to electron densities in each individual

dot of 1.2 × 1011cm−2 and 1.7 × 1011cm−2 respectively. Each dot contains about

30 electrons. This density range is lower than that considered in section 5.3.2 and

matches the density range at which we observe the paired electron additions in large

individual dots. For higher densities and at zero field there is one combined dot

under the gate. However, a magnetic field greater than 4T dramatically affects the

spectrum.

There exists a clearly visible sharp boundary, which separates the spectrum in

two parts. It is marked by a line on Figure 5-8. To the left of the boundary (the low

field side), all electron addition traces show a similar evolution with magnetic field;

electrons appear to enter one combined dot and the Coulomb blockade produces a

nearly periodic addition spectrum. To the right of the boundary (the high field

side), the periodicity of the spectrum is broken, and many anomalous, closely spaced

electron additions are seen. With increasing magnetic field, the boundary between

the two regimes extends up to densities of 1.7 × 1011cm−2 and 2.2 × 1011cm−2, in

each dot respectively (over 60 total electron additions to the two-dot system). An

increase in density of each dot along the boundary can be approximated by the linear

relation ∆n ∝ 0.1×B(T )× 1011cm−2 for both of the two individual dots. This linear

relation holds for all of our samples. Surprisingly this boundary follows the same
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Figure 5-8: The the addition spectrum, for a new sample with a lower barrier. A magnetic field
greater than 4T dramatically affects the spectrum. There exists a clearly visible sharp boundary,
which separates the spectrum in two parts. The boundary is marked by a line. To the left of the
boundary (the low field side), all electron addition traces show a similar evolution with magnetic
field; electrons appear to enter one combined dot and the Coulomb blockade produces a nearly
periodic addition spectrum. To the right of the boundary (the high field side), the periodicity of the
spectrum is broken, and many anomalous, closely spaced electron additions are seen.

105



linear density-field relation as the one seen in individual dots of larger sizes [32] (see

Chapter 3).

To understand the origin of this boundary we expand the addition spectrum to the

right of the boundary. Figure 5-9 shows this part of the spectrum taken with better

resolution and at lower temperatures. A line indicates the position of the boundary.

Again, all traces oscillate with magnetic field. But here the origin of the oscillations

is different from that of the low-field case considered above. For magnetic fields

higher than 4T , electrons within each dot fill only the lowest orbital Landau level,

but with both spin-up and spin-down electrons. With increasing magnetic field, the

electron orbits shrink and the Coulomb repulsion causes the redistribution of electrons

between the two spin-split branches of the lowest orbital Landau level. This produces

oscillations in the single electron traces known as “spin flips” [82, 83, 11].

The most noticeable feature of the Figure 5-9 is the existence of two different

oscillation patterns. Two traces, each representing its own pattern, are marked by R

and B, correspondingly. In fact, the entire spectrum can be separated into two nearly

periodic Coulomb blockade sets, which differ by their “spin flip” patterns. Further

on, we will refer to these sets of addition traces as the “R” set and the “B” set. A

schematic of the spectra shown on Figure 5-10 illustrates our point. Since addition

traces within each set are widely separated by Coulomb blockade and spaced nearly

periodically, any two traces that appear close to each other belong to different sets.

The existence of two patterns characteristic of the individual dots indicates that, to

the right of the boundary, there exist two separate dots, despite the fact that for

zero field two dots are merged into one. We conclude that the boundary separates

two regimes in Vg − B space. In one regime, electron wavefunctions are spread over

the entire area of the double dot and in the other each electron dwells in one of two

individual dots.

In the latter regime, the two dots are not completely independent. Though the

magnetic field breaks one combined electron dot into two separate ones, a residual

coupling remains. The barrier between the two dots is small, and interdot tunneling

remains possible [91, 92, 93, 94, 95]. When ground states of individual dots are aligned
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with each other, a finite tunnel coupling splits two aligned levels [70, 71, 72, 73]. Such

alignment creates the equivalent of a molecular hybrid state. An example of such

splitting are the two hybridized traces marked by a top circle in Figure 5-9. The two

hybridized traces cannot be solely associated with either of the two spin-flip patterns

but rather exhibit features belonging to both of them.

The hybridization shown is not a rare occurrence. Each pair of closely spaced

traces mixes into a hybrid. Three hybrids that appear on Figure 5-9 are marked

by circles. Since “R” traces as well as “B” traces appear nearly periodically in gate

voltage, the occurrence of these pairs is determined by the ratio of two Coulomb

blockade periods ( ∆V R
g /∆V B

g ). For the gate bias range shown on Figure 5-9 the

two periods differ somewhat. Approximately, the ratio is: ∆V R
g /∆V B

g = 4/3. We

believe that the difference reflects the difference in the individual dot’s areas. The

capacitance of a dot to the gate Cg in our geometry is proportional to the dot’s area,

and therefore, the spacing between Coulomb blockade peaks is inversely proportional

to the dot’s area: ∆Vg = e/Cgate ∝ e/Area. For higher gate biases the peak spacing

for both dots decreases, because dots grow in size and the ratio changes. The ratio

of individual dot areas differs from sample to sample, resulting in different patterns

of the hybrid formation.

There are two spurious traces in the spectrum (marked by empty triangles). The

traces do not oscillate in the field, and therefore, are not associated with electron

additions to either of the dots. We see similar traces on some (but not all) of our

samples that have a low barrier between two dots and, hence, exhibit the boundary.

These traces always arise in the gate bias range that corresponds to the merging

of the two electron puddles and disappear for high electron densities. We associate

them with electron additions to a local potential minimum in our samples. The origin

of this minimum is not clear, but the presence (or absence) of the “extra” addition

traces does not seem to affect the behavior of the other electrons in either dot. We

thus exclude them from our discussion.

We now focus our discussion on a pair of hybrid states. A part of the addition

spectrum around a pair of hybrid states (the topmost hybrids on Figure 5-9) Is shown
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Figure 5-9: A part of the spectrum expanded to the right of the boundary (marked by a line).
Two traces, each representing its own oscillation pattern are marked by R and B. Full circles mark
three pairs of hybrid states. Two spurious traces are marked by empty triangles.
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Figure 5-10: Schematic representation of the spectrum shown on Figure 5-9.
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in Figure 5-11A. Six subsequent addition traces, marked by empty circles, from bot-

tom to top are R1, B1, H1, H2, B3, R3. While traces (R1, R3) and (B1, B3)

correspond to electron additions to one dot or the other, each trace of the pair (H1,

H2) is shared between both dots.

We estimate the coupling strength between two dots by describing the spectra

using single particle states. We reconstruct the two hybridized states H1 and H2

from the neighboring “one-dot states” R1, B1, B3, R3 in the following way. First,

we assume that in the absence of a residual interaction the spectrum would be as

presented in Figure 5-11B. In place of the hybrid states H1, H2 there are two unper-

turbed independent states from the two dots: R2 and B2. The following argument

allows us to create R2 (B2). The periodicity within each (R and B) set of traces

predetermines the gate bias at which the “R” trace (“B” trace) appears. Neighboring

traces within each family look alike and can almost be obtained from one another by

a simple shift in the Vg − B plane. Thus for imaginary unperturbed states R2 and

B2 we take ER
2 = (ER

1 + ER
3 )/2 and EB

2 = (EB
1 + EB

3 )/2. Second, we assume that

tunneling between R2 and B2 produces an off-diagonal matrix element U , resulting

in the following Hamiltonian for this two-level system:




EB
2 U

U∗ ER
2


 (5.7)

Then diagonalization of the Hamiltonian 5.7 splits ER
2 and EB

2 into a pair of hybrid

states:

EH
1,2 =

(ER
2 + EB

2 )

2
±

√
(ER

2 − EB
2 )2

4
+ U2 (5.8)

Using U as the only fitting parameter we fit EH
1,2 to our data. The value of U that

produces the best fit provides the estimate for the coupling strength between two

dots.

Surprisingly for such a simplistic model we obtain practically perfect fits to our

data (Figure 5-11C). Unexpectedly, the residual coupling strength U (U ≈ 0.1 ×
(e2/Cdot) for the case shown) displays nearly complete independence of the strength
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of the applied field for fields larger than required for the localization transition.

The results of similar fitting for different densities are summarized in Figure 5-12.

For a given density (the gate voltage Vg) the magnetic field abruptly breaks up one

combined dot in two fragments. For higher densities, a larger field is required for

such a transition. For the fields larger than required for the transition some residual

tunnel coupling between the two fragment remains. Though constant in field, this

coupling increases with density, and becomes comparable to Ec = e2/Cdot at densities

of around 2× 1011cm−2. The boundary ceases to exist at these densities. In fact, as

we described in section 5.3.2 the boundary is altogether absent in samples for which

the individual dot densities at the merging point are higher than 2.3× 1011cm−2, i.e.

the magnetic field has no effect on the merging of two high-density dots.

5.4 Summary

This Chapter presents yet another method of studying localization in a small low-

density electron puddle placed in a disorder potential. Using Single Electron Capac-

itance Spectroscopy, we study electron additions in quantum dots with a “disorder”

potential prepared artificially. We intentionally create a dot with a potential profile

containing two smooth minima separated by a barrier. Through analysis of the addi-

tion spectra in a magnetic field, we distinguish between electrons localized in either

potential well or delocalized over the entire dot.

Our studies conclusively demonstrate that under precisely the same conditions

for observation of the paired electron additions, a low-density electron droplet inside

the dot indeed splits up into smaller fragments. This abrupt disintegration creates

a sharp boundary between periodic and “paired” parts of the addition spectra, with

paired electrons entering into spatially distinct regions within a dot. The boundary

essentially separates two phases: in one, electrons are delocalized over the entire

sample, and in the other, electrons are confined in local disorder minima. We believe

that a similar scenario takes place in large single dots (described in Chapter 3), in

which real disorder is present [32]. In that case the boundary is presumably related
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Figure 5-11: A. An addition spectrum expanded to the right of the boundary. Six subsequent
addition marked by empty circles are R1, B1, H1, H2, B3, R3 (bottom to top). R1,R3 and B1,B3
represent two oscillation patterns. Hybridized traces H1, H2 do not belong to any of the patterns.
B. The hypothetical spectrum in absence of the interaction between two dots. Hybrid states H1,
H2 are replaced by two unperturbed independent states from two dots: R2, B2. C. Reconstruction
of the hybrid states. The data (H1, H2) are shownin gray, black are fits.

112



 

 

  

0

1

n1

n2

n3

n1 < n2 < n3

U
/(

e2 /
C

)

Magnetic field
Figure 5-12: Schematic field dependence of the tunneling matrix element U for different densities
(n1 < n2 < n3). Solid lines denote regions where residual coupling is extracted as described in
the text.
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to a break up of the larger droplet into a central core and a localized periphery.

We also measure the remnant residual interaction between the fragments. Sur-

prisingly, it displays a nearly complete independence on the strength of the applied

field for fields larger than required for the localization transition.

The physical mechanism of such separation or of the pairing phenomena has yet

to be established. However, a recent paper [96] shows that a two-phase coexistence

of high density liquid and a low-density gas might be energetically favorable in the

interacting two-dimensional system placed in a disorder potential. Also numerical

calculations by Canali [66] (see section 3.4) support our finding that two electrons in

the pair enter into spatially separated regions of the dot.
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Chapter 6

Summary and Directions for

Future Research

For half a century physicists have worked to understand localization of strongly inter-

acting electrons in a disorder potential. Either electron interactions or disorder can

produce localization [21, 22]. Though their interplay in two-dimensional systems has

been a subject of intense experimental and theoretical studies [17, 26, 27, 3, 4], no

theory exists fully describing the effects of both disorder and strong interactions.

Quantum dots provide a convenient system for studying electron localization on a

microscopic scale. However, the traditional transport techniques for studying lateral

quantum dots [11] sense primarily delocalized electronic states. A possible exception

is transport studies in vertical structures, but these do not permit variation of electron

density [28, 13], a critically important parameter that changes the effective strength

of electron interactions. We study electron additions in vertical quantum dots using

Single Electron Capacitance Spectroscopy (SECS) [29]. It has demonstrated the

capability of probing both localized and delocalized states of electrons. Furthermore,

this method allows us to study two-dimensional dots of various sizes and over a broad

range of electron densities.

In our experiments, we measure the energies required to add successive electrons

to an initially vacant quantum dot. Our dots are made of standard GaAs/AlGaAs

heterostructures. At low temperatures, a dot that is poorly coupled to its surround-
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ing must contain an integer number of electrons. A nearby gate electrode can draw

electrons into the dot one at a time. We follow how each entering electron overcomes

(with the help of the increasing gate voltage) the mutual repulsion of those electrons

already present in the dot: this is accomplished by registering a sequence of the gate

voltages, at which the additions occur. Contrary to the belief that it would take

more energy to add each successive electron to a quantum dot as the electrons would

repel each other, our SECS measurements have revealed an astonishing phenomenon:

for the low-density regime, electron additions can occur in pairs. Under certain con-

ditions, not one but two electrons join the assemblage at the same gate voltage. It

costs no energy to add a second electron in the pair once the first one has been added.

These paired electron additions indicate that an unidentified mechanism cancels the

repulsion between two electrons. We hypothesized that the pairing occurs for densi-

ties below the localization-delocalization transition within a dot, and two electrons

in the pair are added to spatially isolated regions within a dot.

This thesis describes two experiments we have produced to study this transition

in a controlled fashion. In one experiment, we added an additional side gate to dis-

tinguish electrons residing at the edge of the dot from electrons in the center [33]. In

another, we created a dot with a potential profile that contains two minima separated

by a barrier [34]. Our studies have conclusively demonstrated that under exactly the

same conditions as we observe the paired electron additions [29, 32], a low-density

electron droplet inside the dot does indeed split up into smaller fragments, with each

residing in its local disorder minima. Two electrons in the pair are actually added to

spatially distinct regions within a dot. While there exists no strict theory explaining

all observed details of this very sudden disintegration, several recent numerical cal-

culations are in support of our data [96, 66]. Below we will discuss possible direction

for our future research.
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6.1 Further Study of Localization

The results presented in the Chapters 4 and 5 demonstrate that in our dots we

observe fragmentation of low-density electron droplets into several electron puddles.

The mechanism of this separation has yet to be established. Meanwhile there exists

a number of challenging experimental tasks.

The simplest idea (and the hardest to implement) that comes to mind is to combine

the two experimental techniques: to create a double dot system with a pincher gate.

For now we adjust a barrier between two dots by probing enourmous amount of

different samples. A pincher gate around the double dot would allow to us change

the barrier between two dots in situ on a single sample. This would produce a variable

“disorder” potential. Recall, that we observe the sharp boundary between localized

and delocalized regimes only in the low barrier samples, and the samples with a

high barrier does not exhibit the boundary. For an adjustable barrier between the

two dots we would be able to study disappearance of the boundary with increasing

barrier heights.

Another possibility is to adjust the natural disorder rather than the artificial one.

We have already discussed the source of disorder in section 2.2.4. In our structures

the dot is arranged between two plates of a tunnel capacitor. The lower (tunnel)

barrier allows electron to tunnel from a reservoir, and the top (blocking) barrier is

not tranparent to tunnelng. A δ doping Si layer in the middle of the top blocking

barrier to provide the quantum well with electrons. The positive charges of donor

atoms, which released their electrons, attract the electrons and binds them to the

quantum well. However, this positive charge is not uniform. The donor atoms within

the layer are spaced randomly, and only fraction (about 30%) of them are ionized.

Therefore, there are multiple local minima in plane of the quantum well underneath

positively charged donor atoms. Consider replacement of the δ donor layer in the

insulating top AlGaAs barrier by a heavily doped AlGaAs layer of finite width. This

replacement would not change the profile of the conduction band and electrons are

still be attracted to the quantum well. However, the disoder potential due to the
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randomly distributed donors would be screened by electron gas in the heavily doped

layer. In the δ doping structure we observe delocalization only above critical density

n0 = 1× 1011 cm−2. It would be interesting to check if this density remains the same

for cleaner samples.

It is also interesting to change the lower tunnel barrier in our sample. In our

current structures the barrier is transparent for entire range of our experimental

frequencies. A less transparent barrier would permit studies of the tunneling rates. On

other hand in strong applied field (both in parallel and perpendicular arrangements)

we observe a strong decay in the tunneling rate. A more transparent barrier would

enable us to make experiments strong, particularly, in parallel field. This wasy we

can separate orbital and spin effects in our dots.

Finally, we could study statistics of the peak spacing in our largest dots. Section

3.4 mentions some theoretical efforts in this area [65]. We can test the prediction of

the theory in the low-density regime not accessible by other experimental technique.

6.2 Spectroscopy of Excited States and Study of

Tunneling Rates

Single Electron Capacitance Spectroscopy directly probes only the ground states in

our dot. By combining it with another method developed in our lab: Time Domain

Capacitance Spectroscopy [60], we can develop a powerful probe of both ground and

excited states. TDCS essentially measures real time capacitance response to a sharp

pulse applied between low-dimentional system and a reservoir. As electrons tunnel

from the reservoir onto the system in response to the initital pulse, they induced a

charge on a nearby gate electrode. The charge on this electrode is measured in real

time.

Consider an application of a sharp pulse to a dot. If the height of the pulse is

just about the charging energy, then one electron is added to the dot. The tunneling

rate of this event can be measured directly by TDCS. For increasing magnitude of
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the initial pulse more channels (due to the dot’s excited states) will be available for

tunneling and, hence, the tunneling rate is reduces. By measuring the rate versus the

magnitude of the pulse we can map the excitation spectrum of the dot.

6.3 Spin in Small Dots

Many exciting research topics originate from studies of small quantum dots. This sec-

tion presents our preliminary data taken on small dots. The previous chapters of this

thesis were devoted to the localization transition, which occurs in our large dots with

decreasing electron densities. Different processes take place in small dots. In small

dots containing just a few electrons, both the electron-electron interaction energy and

the quantum confinement energy are comparable to the charging energy. Because of

the strong confinement small dots exhibit atom-like features for low electron occu-

pancy: electrons fill two-fold degenerate orbital states in pairs of spin up and spin

down. The Coulomb interactions, however, modify this simple picture significantly.

6.3.1 How and Why Coulomb Interactions Could Modify

Darwin-Fock Spectrum

As we described in section 5.2, addition spectra for a small dot in a perpendicu-

lar magnetic field can be described within the constant interaction model for single

particle states based on the Darwin-Fock spectrum. The double spin degeneracy of

single particle states gives rise to several important consequences that go under the

name of “even-odd asymmetry” in Coulomb blockade oscillations. In particular, the

dependence of the addition energy on magnetic field differs for even and odd electrons.

The following argument helps to visualize our point. Generally addition energies

“wiggle” in the field. Section 5.2.2 connects these oscillation with shifts of the spatial

electron wavefunction between different angular momentum states. Consecutive odd

and even Coulomb blockade peaks, corresponding to spin up and spin down additions

to the same spatial state, show similar behavior in magnetic field: they “wiggle” in
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phase, maintaining the constant separation (or field independent addition energy).

On other hand, the spacing between an even and a following odd peaks (addition

energy) varies drastically as magnetic field changes, because these electrons occupy

different spatial state.

This behavior was predicted [90] and observed in several experiments [31, 12,

28, 50, 51] in small dots containing just a few electrons. But for higher electron

occupancies new features in the spectra develop, which can not be accounted for

within the framework of the single particle picture presented above. The general

oscillatory behavior of the spectra for larger electron numbers is consistent with the

single particle model except for the notable absence of spin degeneracy in this high-

density regime. This absence was first reported by McEuen et al. in [54, 82] and

studied in detail (albeit in small fields) by Marcus’ group [89]. It is not clear whether

under these conditions consecutive electrons enter the dot with parallel spins. So

far the disappearance of the spin degeneracy with increasing density has not been

understood, but strong Coulomb interactions must play a role here.

Halperin argued [97] that symmetry properties combined with Coulomb repulsion

may induce spin flips in the ground state. Consider two spatial states E1 and E2.

Two electrons with spin up and spin down fill E1 first, and then the next two fill E2

in a similar fashion. However, because of the smaller overlap the two wavefunctions,

the Coulomb energy between two electrons occupying these states is smaller when

one electron fills E1 and the other fills E2. Therefore, placing the second electron on

E2 saves the Coulomb energy though it costs the difference in confinement energies

E2 − E1. If the cost is smaller than the gain then one spin up electron occupies

E1 while the next one fills E2 with the same spin direction. The exchange part of

the Coulomb energy only enhances the effect and ensures the alignment of the two

spins. In fact, Oreg, Byczuk and Halperin proposed a model explaining a mechanism

for internal spin-flip transitions in the armchair carbon nanotube [98] based on this

consideration.

In quantum dots, several modifications to the Darwin-Fock spectra due to direct

Coulomb and exchange interactions were studied experimentally and modelled by
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Tarucha’s group [51, 28, 50]. Basically, their experiments focus on certain degeneracy

points between two spatial levels E1 and E2 in a dot. Away for the degeneracy

point two electrons with spin up and spin down fill E1 first, and then the next two

fill E2 in a similar fashion. Near the degeneracy point, the gain due to Coulomb

repulsion is larger then the cost in the confinement energy E2 −E1, and two spin up

electrons occupies E1 and E2. Note that because of the small effective mass in GaAs,

spin effects in a magnetic field, such as Zeeman splitting, are an order of magnitude

smaller than changes in spatial energies and can be neglected.

6.3.2 Beyond Darwin-Fock: Data

The spectra of our smallest dots exhibit similar features as we will describe below.

Our data suggests that not only we observe spin-flips of a second electron added to

any fourfold degeneracy point, but also we are able to follow the restoration of the

spin filling. After the first two electrons occupy E1 and E2 with their spin up, the

next two electrons fill the same states with their spin down. Even though the spin-flip

occurs when the second electron enters the dot, it is immideately compensated by the

third electron addition. These processes produces a series of downward and upward

cusps, which gradually wash away the even-odd asymmetry as the electron occupancy

increases.

The capacitance traces taken at different values of the magnetic field are plotted

together on the greyscale panel in Figure 6-1A. Black denotes high capacitance. Each

successive trace corresponds to the energy for adding an electron to the small dot.

Altogether 23 addition traces are shown. The lowest trace shown represents the

first electron added. The overall spectrum can be described qualitatively within the

constant interaction model for Darwin-Fock states, as is typical for individual small

circular dots[12, 13, 28]. Addition energies oscillate with magnetic field. Pairs of

consecutive odd and even Coulomb blockade peaks, corresponding to spin up and

spin down additions to the same spatial state, show similar behavior in magnetic

field. These pairs are marked by brackets. However, more careful inspection of the

data shows features that the simple model does not explain. For the fields higher
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Figure 6-1: A. Magnetic field evolution of first 23 consecutive peaks for one of our small dots.
10th and 20th electron additions are numbered. Vertical bar show the gate voltage scale (10 mV).
Addition traces “wiggle” in the field. Traces that wiggle as a pair are marked by brackets. B. An
expansion into a part of the spectrum shown in A. Numbers on the left counts the traces. Brackets
mark even-odd pairs. Downward and upward cusps are highlighted by empty ovals.
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Figure 6-2: Collapsed addition traces from 7th to 20th from figure 6-1A. Note a perfect match
between upward and downward cusps.

123



than ≈ 1T the 8th trace nicely pairs with 7th trace. But for smaller values of the

field B ≤ 1T it does not replicate the 7th trace, but instead has downward slope.

Note that 9th trace in this field range has slope opposite to that of 8th trace. This is

not the sole deviation from the simplest Darwin-Fock spectrum.

Figure 6-1B expands a part of the addition spectrum between 9th and 15th elec-

trons. Brackets again mark even-odd pairs. Consider the 10th addition trace around

B = 1.5T . Around this field it does not follow the 9th trace. Instead it has a down-

ward cusp. Surprisingly, the 11th trace has an upward cusp at this field. In naive

picture, the 11th and 10th electron additions are associated with different spatial

state and are not related. By examining figure 6-1B carefully, we find many pairs of

cusps (highlighted by empty ovals) that belong to “unrelated” addtion traces. To test

how well upward cusps match downward cusps we collapes the spectrum, by shifting

addition traces in the gate voltage. A totally unexpected result of this subtraction

is shown on Figure 6-2. The plot shows a very ordered pattern. The cusps perfectly

match each other.

We believe that this pattern arises due to mechanism outlined in section 6.3.1.

The understanding of the very details of our data is a subject of our intensive studies.
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Appendix A

Fabrication Recipes

This appendix contains our fabrication process. We adopted the following logic for

the list below. When a fabrication step is listed for the first time, we add few impor-

tant comments. For consequtive entries we keep the description short. The physical

principles behind every step are presented in Chapter 2. Here we limit ourself to the

very technical issues. For some step only approximate numbers are given. This is

because certain conditions fluctuate a lot from one day to the other. The general rule

for these steps: calibration is required to be performed on dummy samples before the

real sample is processed.

The exposure in sections A.2, A.4, A.4, A.5 are performed using optical lithog-

raphy on chips 6 × 11 mm. Each chip contains 18 mesas. The processes in sections

A.6, A.7, A.8 are done by E-beam lithography on small chips, each containing only

one mesa.

A.1 Sample Cleaning

While performing the boiling and ultrasonic bath we place a paper filter on the bottom

on the glass beaker prior to placing our sample inside. This prevents brittle GaAs

samples from hitting against the walls of the glass beaker.

1. Boil in 1,1,1 Trichloroethane (TCA) for 2 min. This step mainly removes grease

from the surface. We perform this step only after receipt from the grower.
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2. Clean in ultrasonic bath in aceton for 2 min.

3. Clean in ultrasonic bath in methanol for 2 min.

4. Blow dry with N2 before methanol dries by itself.

5. After cleaning the surface needs to be covered with a resist as soon as possible.

The cleaning of the samples is extremely important for the success of all processing

steps. We perform the following procedure before every lithographical step of our

fabrication process. If the visible residues are left on the surface, some or all steps

needs to be repeated and time interval may be increased.

A.2 Mesa Definition

1. Clean sample: see section A.1.

2. Spin Shipley positive resist 1813 at 4000 rpm for 40s.

3. Soft bake in 90oC oven for 30 min. The resulting thickness of the photoresist is

about 1µm. For features with dimensions less then 3µm a thinner Shipley 1805

resist may be used. This resist produces thickness of about 0.3µm.

4. Align the sample with the mask and expose.

5. Develop in MF-319 developer. The exposure and development times needs to

be calibrated at the begining of the day. Generally exposure time is around 10s,

and successive development is about 1 min.

6. Rinse in DI water for 1 minite.

7. Blow dry with N2.

8. Etch mesa in (1 : 8 : 1000) H2SO4/H2O2/H2O solution. The etch rate is

about 45nm/min, but needs to be calibrated before every important step. This

solution saturates quickly and needs to be replaces often if many samples are
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being processed. The rates for (1:8:500) and (1:8:250) are larger by a factor of

2 and 4, correspondingly

9. Rinse in Di water for 1 min.

10. Strip the photoresist by soaking in aceton. Use ultrasonic bath if needed.

A.3 Ohmic Contacts: Positive Resist

1. Clean sample: see section A.1.

2. Spin Shipley positive resist 1813 at 4000 rpm for 40s.

3. Soft bake in 90oC oven for 25 min.

4. Align the sample with the mask and expose.

5. Soak in Chlorobenzene for 4 min. You may see the exposed pattern at this step.

6. Soft bake in 90oC oven for 5 min.

7. Develop in MF-319

8. Rinse in DI water for 1 min.

9. Blow dry with N2.

10. Clean in UV ozone oven for 30 s. This step cleans the surface of the resist’s

residue but also damages the resist profile

11. Load the sample in evaporator after a quick etch of 10 s in H2SO4/H2O2/H2O

(1:8:1000).

12. Evaporate metallic layers according to the following sequence: nickel 5 nm,

germanium 35 nm, gold 70 nm.
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13. Lift off by soaking in aceton. If the unwanted metal does not come off easily,

use ultrasonic bath or spray with aceton. If nothing helps, place the sample

in boiling NMP (1-mehtyl-pyrrolidone). Important: do not to let the sample

dry before the lift-off is completed. Upon the completion of the lift-off step the

sample must be clean.

14. Clean in ultrasonic bath in methanol for 2 min.

15. Blow dry with N2.

16. Anneal the contacts at 435oC for 0.5 min. The parameters for the Eurotherm

strip heater that was used for the ohmic contacts are:

Pr1 : 400 Pr2 : 600 Pr3 : 100 Pr4 : 800

Pl1 : 200 Pl2 : 420 Pl3 : 435 Pl4 : 0

Pd1 : 0.5 Pd2 : 0 Pd3 : 0.5 Pd4 : End

17. Check the contact resistance after annealing on the probe station. Contacts

with resistance of 1.8−2.4 KΩm (for two contacts in series) does not freeze out

at He temperatures.

A.4 Ohmic Contacts: Negative Resist

The latest series of samples we processed with negative photoresist. We found that

negative resist provide large degree of undercut and facilitates the lift-off procedure

greatly. Below we list only the steps that differ from previous section

1. Clean sample: see section A.1.

2. Spin NR8-1000 at 3000 rpm for 40s.

3. Bake on 130oC hot plate for 1 min. The resulting thickness of the photoresist

is about 1µm.
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4. Align the sample with the mask and expose. Again, the exposure and develop-

ment times needs to be calibrated at the begining of the day. Generally exposure

time and development times are larger for this resist: 20s, 2 min correpondingly.

5. Develop in RD-2.

6. Rinse in DI water for 1 min.

7. Blow dry with N2.

8. Clean the sample in plasma asher for 1 min. The negative resist provide much

better undercut, that is not destroyed by 1 min in our plasma asher. The ashing

rate is about 160 nm/min.

For the following steps: evaporation, lift-off, annealing see section A.3.

A.5 Lead Deposition

This lithographical step is analogous to ones described in sections A.3 and A.4 up to

loading the sample into evaporator:

1. Evaporate metallic layers according to the following sequence: chromium 5 nm,

gold 120 nm.

2. Lift off. Upon the completion of the lift-off step the sample must be clean.

3. Clean in ultrasonic bath in methanol for 2 min.

4. Blow dry with N2.

A.6 Dot Formation

1. Clean sample: see section A.1.

2. Spin MMA(8.5)MAA (6% in Ethyl Lactate) at 2700 rpm for 40s.
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3. Bake in 130oC oven for 30 min. The resulting thickness is about 200nm.

4. Spin 950PMMA (1% in Chloronezene) at 4000 rpm for 40s.

5. Bake in 170oC oven for 30 min. The resulting thickness is about 50nm.

6. Cleave the large chip.

7. Write the pattern on the E-beam machine. Parameters used: Accelarating

Voltage = 20 kV ; Probe current = 20 pA; Area dose = 220 µC/cm2 ; Line dose

= 1.6 nC/cm.

8. Develop in MIBK:IPA 2:3 for 1 min.

9. Rinse in IPA for 30s.

10. Blow dry with N2.

11. Ozone cleaning 20s.

12. Evaporate metallic layers according to the following sequence: chromium 5 nm,

gold 35 nm.

13. Lift-off.

14. Clean in ultrasonic bath in methanol for 2 min.

15. Blow dry with N2.

16. Ozone cleaning for 20 min.

17. Dry etch or wet etch to remove GaAs cap layer (30nm).

A.7 Side Gate Deposition

1. Clean sample: see section A.1.

2. Spin MMA(8.5)MAA (6% in Ethyl Lactate) at 2700 rpm for 40s.
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3. Bake in 130oC oven for 30 min. The resulting thickness is about 200nm.

4. Spin 950PMMA (2% in Chloronezene) at 4000 rpm for 40s.

5. Bake in 170oC oven for 30 min. The resulting thickness is about 100nm.

6. Write the pattern on the E-beam machine. Parameters used: Accelarating

Voltage = 20 kV ; Probe current = 20 pA; Area dose = 200 µC/cm2.

7. Develop in MIBK:IPA 2:3 for 30s.

8. Develop in PGMEA:EA 1:4 for 30s (45s may facilitate the following lift-off).

9. Rinse in IPA for 30s.

10. Plasma Asher for 3s.

11. Evaporate metallic layers according to the following sequence: chromium 4 nm,

gold 5 nm.

12. Lift-off.

13. Clean in ultrasonic bath in methanol for 2 min.

14. Blow dry with N2.

A.8 Patches Deposion

1. Clean sample: see section A.1.

2. Spin MMA(8.5)MAA (6% in Ethyl Lactate) at 2700 rpm for 40s.

3. Bake in 130oC oven for 30 min. The resulting thickness is about 200nm.

4. Spin 950PMMA (2% in Chloronezene) at 4000 rpm for 40s.

5. Bake in 170oC oven for 30 min. The resulting thickness is about 100nm.
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6. Write the pattern on the E-beam machine. Parameters used: Accelarating

Voltage = 20 kV ; Probe current = 20 pA; Area dose = 200 µC/cm2 for feature

less then 2µm; Area dose = 180 µC/cm2 for feature larger then 2µm.

7. Develop in MIBK:IPA 2:3 for 30s.

8. Develop in PGMEA:EA 1:4 for 30s.

9. Rinse in IPA for 30s.

10. Plasma Asher for 3s.

11. Evaporate metallic layers at two angles according to the following sequence: set

the stage angle to −10o and evaporate chromium 5 nm; set the stage angle to

+10o and evaporate chromium 5 nm followed by gold 15 nm; set the stage angle

to −10o and evaporate gold 15 nm. 10 turns on our sample stage corresponds

to 10o.

12. Lift-off.

13. Clean in ultrasonic bath in methanol for 2 min.

14. Blow dry with N2.
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Appendix B

JEOL 6400 Scanning-Electron

Microscope: getting the best

lithographical resolution

We perform the electron-bean lithography in a JEOL 6400 Scanning Electron Micro-

scope. The following beam parameters are used:

1. Accelerating voltage: 20 kV . Higher voltage reduces additional exposure due

to backscattering. On other hand, they might introduce defects into the sample

and , therefore, reduce the sample quality.

2. Probe current: 20 pA. Smaller probe current would increase the resolution, but

the poor signal-to-noise ratio makes the focusing virtually impossible.

3. Aperture setting: 4. Smallest aperture is necessary for the small probe current.

4. Working distance: 6 mm. Getting the sample as close as possible to the gun

increases the resolution.

5. Magnification: 1000. Although all the patterns are written with a MAG =

1000, we change the magnification many times during the set-up and optimiza-

tion of the beam.
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Before writing, the microscope beam must be properly aligned, focused, corrected for

astigmatism, etc. This is performed on a resolution standard, placed in the microscope

chamber next to the sample on the same chip holder. The resolution standard is made

of a thin film of gold on a graphite substrate. The gold consists of balls of diameters

ranging from 50nm to 100nm and can easily be used for focusing at a magnification

of 300000, the maximum magnification of the machine. The following pages outlines

our setup, the beam optimization and actual writing procedures.

I Sample mounting.

1 Mount a sample so that mesa is perpendicular to the rod.

2 Press the red button to pump out the lock.

3 Align the stage: X = 25.0, Y = 29.0, Zcoarse = 39, tilt = 0, rotation = 0,

Zfine is counterclockwise all the way.

4 Check that ACC VOLT is off. Open the valve, push the sample to the

stage, unscrew the rod, take it off, close the valve, check that pressure

starts going down (Penning 1002).

5 Press the red button to vent the lock, take the rod out.

6 Zcoarse = 8 or 15 (the exact value might differ for different X, Y, and the

sample mount).

II Setting up the probe current.

1 Press the BREAK key to enable the screen, press PF2 to enable the EOS

menu.

2 Scan speed FAST.

3 Magnification < 1000.

4 Coarse focus Zcoarse = 2 mm.

5 Press D-MAG button.

6 Press the MODE button until you get a horizontal line.
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7 Press key INS key, type ”ACC 20”, turn ACC VOLT on.

8 Set CL coarse = 13 (EOS 1st menu) by turning the probe current knob.

9 Contrast=255, turn the Brightness knob up until the line starts to rise.

10 Turn the filament current up to 240 mA (2-3 min)

11 Maximize the current by changing the GUN ALIGNMENT, make several

iterations: XY; tilt; XY; tilt. Gun alignment knobs are to the left from

the filament knob.

12 Check that decreasing CL coarse will increase the probe current.

13 PCD on, by changing CL fine (+ and - keys in EOS 1st menu) set up the

exact current value (say, 0.020nA).

Comments: When PCD is on and Keithley reads the probe current, white switch

AEM must be turned down. When maximizing the probe current look at the

Keithley and the height of the line on the left screen (latter can be only done

with PCD off.)

III Focusing the microscope.

1 Get picture on the left screen by pressing the PIC button.

2 Find something to focus on, magnification ≈ 10000, do it step by step

increasing the magnification while moving from the edge.

3 WOBLER on, change the aperture until picture is stable, WOBLER off.

4 Focus on something (MAG ≈ 40000), correct for astigmatism to get

sharper image, repeat for higher magnification until MAG = 300000.

5 Repeat steps 3 and 4.

6 Set scan position and shift to zero

7 Set the probe current again (see II-13)

Comments: When doing steps 3c,3d,3e change place on the sample constantly.

If you can not see anything turn PMT link off (EOS, 3rd menu). For fine

positioning use + and - on the keyboard (EOS, 2nd menu).
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IV Connecting the computer.

1 Switch the monitor on.

2 Connect “beam” BNC cable and plug the blue box.

V Aligning the sample.

1 Find the sample (MAG ≈ 5000), adjust the height using Zfine (to the left

from the X knob, clockwise to rise), adjust focus.

2 Scan rotation on, align the scan coordinates with the sample coordinates.

3 Change the stage coordinates (X, Y) slightly, by adjusting the stage ro-

tation knob (to the right from the X knob) align the sample with the

scan. Scan rotation needs to be constantly adjusted during this proce-

dure. Finally, X stage movement should move the image on the left screen

vertically, Y - horizontally.

4 Find the centerline, focus on the centerline in the “line” MODE - make

the step as sharp as possible. (MAG ≈ 20000)

5 WARNING! This step should be done very fast! Make sure that scan

movement light off (left side of the keyboard), switch to the PIC, find

the alignment mark in the middle of the mesa, put it in the middle of the

screen; switch to the “line” MODE, by adjusting the X scan position, focus

on the step for different magnification until you get to the highest, PCD

on; set position and image shift to zero (EOS, 2nd menu).

VI Writing.

1 Press PIC button

2 Set brightness to zero (EOS, 1st menu).

3 MAG = 1000

4 Flip the blue box switch on top of the microscope (pull a bit to flip).

5 Switch Beam Blanker to external
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6 Check the current (Keithley), adjust if necessary

7 Start the program: cd user, pg runfile

8 PCD off, hit the SPACEBAR.

9 Turn the brightness up to see the writing.

VII Subsequent writing.

1 Change the stage position

2 MAG = 20000

3 Flip the blue box switch on top of the microscope (pull a bit to flip).

4 Beam blanker off.

5 Turn up the brightness (EOS, 1st menu)

6 Repeat starting from step V-4.

VIII Switching off

1 Stage back into initial position.

2 Filament off (few seconds)

3 ACC VOLT off.

4 MAG = 300000

5 Flip the blue box switch on top of the microscope (pull a bit to flip).

6 Beam blanker OFF

7 Scan speed SLOW

8 Monitor off, press PF1 and the BREAK key to switch microscope monitor

off.

9 Take the sample out (see I) .
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