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Abstract

We measure the single particle density of states (DOS) of a two-dimensional elec-
tron system (2DES) in a GaAs/AlGaAs heterostructure. Using a technique that we
call “Time Domain Capacitance Spectroscopy” (TDCS), we measure the complete
current-voltage characteristics for tunneling into the 2DES without making ohmic
contacts to it. TDCS detects the tunneling current in regimes difficult to access by
conventional methods, such as when the in-plane conductance is low. For the first
time we detect the contributions of localized states to the tunneling current.

The DOS of an interacting 2DES in the diffusive limit displays logarithmic energy
dependence near the Fermi level. Using TDCS, we measure the voltage dependence
of the tunneling conductance of a semiconductor 2DES and observe the logarithmic
Coulomb anomaly for the first time in 2D systems other than thin metal films. As we
increase the density, this suppression in tunneling conductance narrows and recedes.
Nevertheless suppression reappears when we apply a magnetic field perpendicular to
the 2D plane. We find that the tunneling conductance depends linearly on voltage
near zero bias for all magnetic field strengths and electron densities. Moreover, the
slopes of this linear gap are strongly field dependent. The data are suggestive of a
new model of the tunneling gap in the presence of disorder and screening.

We also use TDCS to study the interactions among electronic spins. By applying
excitations less than kT , we observe that equilibrium tunneling into spin-polarized
quantum Hall states (ν=1, 3, 1/3) occurs at two distinct tunneling rates for samples of
very high mobility. Some electrons tunnel into the 2DES at a fast rate while the rest
tunnel at a rate up to 2 orders of magnitude slower. Such novel double-rate tunneling
is not observed at even-integer filling fractions where the 2DES is not spin-polarized.
The dependence of the two rates on magnetic field, temperature and tunnel barrier
thickness suggests that slow in-plane spin relaxation, possibly related to formation of
Skyrmions, leads to a bottleneck for tunneling of electrons.

Thesis Supervisor: Raymond C. Ashoori
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Chapter 1

Introduction

The physics of the two-dimensional electron gas (2DEG) has been a subject of inten-

sive research for several decades. Nonetheless, new and exciting physics of the 2DEG

continues to be generated. Topics such as the quantum Hall effect in strong per-

pendicular magnetic fields and the possibility of existence of a 2D conducting phase

remain subjects of strong current interest.

The transport properties of the 2DEG have been extensively studied in Si/SiO2

and GaAs/AlGaAs systems. The vast majority of these experiments apply an electri-

cal current in the plane of the 2DEG and measure the corresponding voltage drop in

directions parallel or perpendicular to the current in order to determine the in-plane

resistance or Hall resistance. This thesis, in contrast, focuses on experiments in which

electron transport takes place via tunneling in the direction normal to the 2D plane.

By measuring the tunneling current, we study the response of the 2D system when

an extra electron is injected into it in a tunneling event.

Tunneling experiments have proven to be a powerful probe of correlations in 2D

systems. However, due to a number of experimental difficulties, there have been

few experiments that measure the tunneling current into a 2DES, in contrast to the

large number of experiments measuring transport within the 2D plane. First, in con-

ventional tunneling measurements, electrons that tunnel into a 2D system introduce

charge which must be removed from the system to avoid local charge accumulation

at long time scales. This is achieved by conduction within the 2D plane. As a result,
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conventional measurement schemes can only detect contributions from conducting or

extended electron states. The energetics of tunneling into localized sites, though of

great theoretical interest, have not been measured experimentally. A second technical

problem arises due to the difficulty in making an electrical contact to the 2D layer

in semiconductor heterostructures without shorting it to the reservoir providing the

tunneling electrons.

In this thesis, we measure tunneling into the 2DEG using a technique we called

“Time Domain Capacitance Spectroscopy” (TDCS), which we developed to circum-

vent the above problems. Using TDCS, we measure the complete current-voltage

(I-V) characteristics for tunneling into the 2DEG without making direct electrical

contacts to it. TDCS enables us to detect the tunneling current in regimes difficult to

access by conventional methods, such as when the in-plane conductance of the 2DEG

is low. For the first time we are able to detect the contributions of localized states to

the tunneling current.

We describe TDCS in detail in Chapter 2. In Chapter 3, we perform a TDCS

study of the zero-bias logarithmic Coulomb anomaly of the tunnel conductance into

a disordered interacting 2D system in zero magnetic field. In Chapter 4, we show

that in a perpendicular magnetic field, the tunneling conductance varies linearly with

voltage. The slope of this linear gap depends strongly on magnetic field. We propose

a “Coulomb Blockade Gap” model to explain our data. In Chapter 5 we use TDCS

to study spin effects on tunneling into 2D systems at special densities and magnetic

field when the system is ferromagnetic. We demonstrate that non-equilibrium spin

accumulation leads to a suppression of tunneling current.

The rest of this chapter gives a brief introduction to 2D electron systems and

explains why tunneling measurements are powerful probes of electron-electron inter-

actions.

14



1.1 Introduction to 2D Electron Systems

Two-dimensional electron systems of high mobility are usually created in GaAs/AlGaAs

heterostructures grown by molecular beam epitaxy (MBE). MBE has the capability of

controlling the crystal composition down to a single atomic layer. One can therefore

utilize the conduction band offset between GaAs and AlGaAs to define structures

such as potential wells and barriers with atomic resolution. By introducing dopants

at appropriate positions, electrons accumulate at the GaAs/AlGaAs interface or in

GaAs quantum wells. For a 150 Å GaAs quantum well, the confinement results in a

separation of about 50 meV between the first and second subband, while the Fermi

energy is only 3.6 meV at typical 2D electron density of 1 × 1011cm−2. Since we

perform our measurement at a temperature of < 1 K (equivalent to 0.1 meV), we can

ignore thermal activation of electrons to the second subband and treat electrons in

the quantum well as a purely two-dimensional system.

In the absence of a magnetic field, the density of states (DOS) in two dimensions

is a constant, dependent only on fundamental constants and the effective mass of the

confined electrons. Application of a perpendicular magnetic field has profound effects

on 2D systems. In a single particle picture and with no disorder in the 2DEG, the

magnetic field essentially confines electrons laterally in identical harmonic oscillator

potentials, the number of which equals the number of magnetic flux quanta passing

through the 2D system. The resultant quantum energy levels, known as Landau

levels, are equally spaced in energy and highly degenerate. Both the degeneracy and

the separation between adjacent Landau levels increase linearly with magnetic field.

Classically, the degeneracy corresponds to electrons performing cyclotron motion with

the same energy at different spatial locations. Therefore, the DOS of an ideal 2D

system in a magnetic field consists of a series of delta functions. In a real system with

disorder, the Landau levels broaden.

The filling factor ν is the number of Landau levels filled with electrons. One can

control ν by changing the 2D electron density at a constant magnetic field to fill the

Landau levels successively. Alternatively one can maintain the 2D system at a fixed
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density while changing the magnetic field so that ν changes due to variation in the

degeneracy of the Landau levels.

In 1980, von Klitzing, Dorda and Pepper [1] measures the transport properties

of a 2D system formed at the inversion layer of the Si/SiO2 system and discovered

the quantum Hall effect. They found that as the magnetic field increases, the Hall

resistance of a 2DEG rises in steps instead of linearly like in ordinary bulk semicon-

ductors or metals. Each plateau on the Hall resistance is quantized very accurately

to the value νh/e2, where h is the Planck’s constant and e is the electronic charge. At

precisely the magnetic fields when the Hall resistance displays steps, the longitudinal

(in-plane) conductance drops to zero.

Basic theories of the quantum Hall effect rely on finite DOS between Landau

levels. Electronic states between Landau levels are localized while the states in the

middle of a Landau level are extended. The Hall plateaus occur around integer filling

factors when the chemical potential lies between Landau levels. Since the states near

the chemical potential are localized, the 2D system behaves effectively as an insulator

at integer fillings. One of the key contributions of this thesis is that we measure

tunneling in the quantum Hall regimes when the states at the chemical potential are

localized and the in-plane conductance vanishes.

Two-dimensional systems also have remarkable spin properties due to the inter-

play between Zeeman coupling of electronic spins to an applied magnetic field and

Coulomb interactions among electrons. When the lowest Landau level is filled with

electrons with a single spin orientation (ν = 1), exchange interactions align electron

spins to form a nearly perfect ferromagnet [2]. Recently, theorists predicted that the

elementary charge excitations of this ν = 1 quantum Hall state consist of spin textures

known as Skyrmions [3, 4]. In Chapter 5, we elaborate on spin properties of these

ferromagnetic quantum Hall states and describe our tunneling study of interactions

among electronic spins.
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1.2 Simplest picture of Tunneling Suppression

The interplay among electron-electron interactions, disorder and/or magnetic field

leads to the formation of an energy gap in the single particle density of states (DOS)

at the chemical potential [5, 6].

In the simplest picture we can understand the suppression of DOS in the following

way: Suppose we start with a fix number of electrons in a disordered background

potential. In the ground state, electrons will arrange themselves at positions which

minimize their energy with respect to both the disorder potential and their mutual

repulsion. Tunneling injects an extra electron suddenly into the system. In general

this is not the ground state of the new system. The extra electron has a high Coulomb

energy and the system must relax to accommodate the new electron. An electron must

pay an extra energy cost in order to tunnel into the system. In other words, there is

a reduction in the DOS or the development of a pseudogap near the Fermi energy.

This pseudogap has some unique and remarkable properties. First, it exists even

when the 2DEG is compressible, such as at ν = 1/2, where in-plane transport mea-

surements display no activation behavior. Second, the pseudogap, if observable, is

always pinned at the chemical potential, in contrast to ordinary band gaps in semi-

conductors that are fixed in energy. For instance, if the 2D electron density increases

by a factor of two, a pseudogap develops at the new chemical potential. These prop-

erties arise from the difference the single particle DOS and thermodynamic DOS that

will be the subject of the next section.

Different theoretical models lead to entirely different shapes of the pseudogap in

the single particle DOS. The exact energy dependence is determined by a number

of different factors such as the degree of localization of electronic states, the filling

factor ν in the presence of magnetic field, and/or the effectiveness of screening. We

will discuss in the later chapters four different models that we believe are the most

relevant to our experiment. In Chapter 3, we will describe the logarithmic Coulomb

anomaly in tunneling conductance for a diffusive 2D electron system, as well as a

semi-classical model that predicts the tunneling conductance varying as power law of
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voltage with the exponent determined by the in-plane conductance. In Chapter 4 we

will derive the Coulomb gap for a classical system of localized point charges. We will

also present in the same chapter a “Coulomb blockade gap” model that we proposed

to explain our tunneling data qualitatively.

1.3 Thermodynamic and Single- Particle Density

of States

As described in the last section, the tunneling of an electron into or out of the 2DEG

may force the system into a non-equilibrium state. This requires the definition of two

different DOS: thermodynamic DOS for a system that has relaxed to equilibrium and

single-particle DOS that describes the non-equilibrium situation. In this section, we

clarify the difference between these two quantities.

The thermodynamic DOS, δN/δµ, is the change in particle density N of a system

for a change in chemical potential µ after a time interval longer than the internal

equilibration time of the system. For instance, in low frequency capacitance experi-

ments (described in section 2.4.2), we measure δN/δµ by modulating the potentials

slowly so that the system evolves reversibly during the course of measurement.

On the other hand, measurements of tunneling conductance yield the single-

particle DOS. The single-particle DOS is relevant when the system does not have

sufficient time to rearrange during the sudden injection of an electron. In the pres-

ence of electron-electron interaction, a pseudogap develops in the single particle DOS

reflecting the non-equilibrium accumulation of charge at short time scales. The single-

particle DOS may be significantly smaller than the thermodynamic DOS. For in-

stance, in a strong magnetic field the single particle DOS at the chemical potential

may be suppressed by several orders of magnitude from the thermodynamic value.
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Figure 1-1: Energy diagram for two systems separated by a tunnel barrier.

1.4 Single-particle DOS and Tunneling Conduc-

tance

In this section, we will show that measurement of the differential tunneling conduc-

tance as a function of voltage yields directly the single-particle DOS as a function of

energy.

In Fig. 1-1, a potential barrier separates system 1 and system 2 with electrochem-

ical potential difference of eV . The potential barrier is thin enough so that electrons

can tunnel through it under appropriate conditions. One requirement is that there

must be a filled state in one system and an empty state at a corresponding energy

in the other system. We obtain the tunneling current by integrating over states that
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satisfy the above criteria:

Itunnel = I12 − I21 (1.1)

∝ − e

τ

∫ ∞

−∞
n1(E − eV )f(E − eV )n2(E)(1− f(E))dE

+
e

τ

∫ ∞

−∞
n1(E − eV )(1− f(E − eV ))n2(E)f(E)dE (1.2)

=
e

τ

∫ ∞

−∞
n1(E − eV )n2(E)[f(E)− f(E − eV )]dE (1.3)

where I12 is the current from system 1 to 2, e is magnitude of the electronic charge,

τ is the average time interval between tunneling events (determined by the barrier

thickness and height), f(E) is the Fermi distribution, n1(E) and n2(E) are the density

of states of system 1 and 2 respectively. In our experiment, system 1 is a highly doped

3D semiconductor that has a featureless DOS for small voltages. Therefore we can

assume n1(E) to be constant over our range of interest. The differential tunneling

conductance G then becomes:

G =
dItunnel

dV
∝ e2

τ
n1

∫ ∞

−∞
n2(E)

df(E − eV )

E
dE (1.4)

At temperature T = 0, the derivative of the Fermi function reduces to a delta function,

further simplifying the expression for dItunnel/dV :

dItunnel

dV
∝ n2(eV ) (1.5)

The tunneling differential conductance is thus directly proportional to the single par-

ticle DOS at low temperatures.

As we will describe in Chapter 2, our experimental setup measures the tunneling

conductance I/V instead of the differential conductance dI/dV . Although we can

convert I/V to dI/dV by simple differentiation, this process generates a considerable

amount of noise. We therefore analyze most data presented in this thesis in the form

I/V . This does not introduce any complications to analysis since I/V preserves power
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law or logarithmic dependence in dI/dV . For the case of logarithmic dI/dV :

dI

dV
= A1 + A2 log(V ) (1.6)

I = (A1 − A2)V + A2V log(V ) (1.7)

I

V
= (A1 − A2) + A2 log(V ) (1.8)

where A1 and A2 are arbitrary constants. For power law with any exponent α and

prefactor A3:

dI

dV
= A3V

α (1.9)

I =
A3

α + 1
V α+1 (1.10)

I

V
=

A3

α + 1
V α (1.11)

So far, we have only observed logarithmic or power law I/V with different exponents

in our measurements.

We proceed with Chapter 2 that describes TDCS, a novel technique we developed

to measure the tunneling conductance.
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Chapter 2

Time Domain Capacitance

Spectroscopy

In this chapter we will describe “Time Domain Capacitance Spectroscopy” (TDCS).

We developed TDCS to obtain most of the data presented in this thesis. TDCS mea-

sures the tunneling current-voltage (I-V) characteristics into mesoscopic semiconduc-

tor systems such as two-dimensional electron gas (2DEG) or quantum dots, in regimes

not accessible by conventional tunneling measurements. First, TDCS enables us to

measure the tunneling current into a 2DEG at arbitrary low in-plane conductance.

For the first time we are able to measure the contribution of localized states to the

tunneling current. Second, TDCS measures the complete tunneling current-voltage

characteristics without making an ohmic contact to the 2DEG. As we will describe in

section 2.1, making electrical contacts to mesoscopic semiconductor systems is often

difficult, or even impossible in some cases.

TDCS is an extension of AC capacitance measurements on similar samples by

Ashoori [7]. The AC technique measures the sample impedance over a wide frequency

range to extract the zero-bias tunneling conductance. TDCS, like the AC technique,

utilizes a capacitance bridge as the external circuit for detection of the tunneling

signal. However, TDCS measures the tunneling signal in real time, in response to a

step excitation. Effectively we measure tunneling at all frequencies in a single time

trace, provided we repeat the step excitation enough times to signal-average the time
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response to recover it from noise. Moreover, application of step excitations allows us

to measure the tunneling conductance away from zero-bias and obtain the complete

tunneling I-V characteristics, which is often highly non-linear and asymmetric in

voltage. From the tunneling I-V, we can deduce the single-particle density of states

(DOS) which contains a gap at the Fermi level due to electron-electron interactions,

as we described in Chapter 1.

We begin with a review of conventional methods of tunneling measurement and

their limitations. Next, we describe our sample design and experimental apparatus

for TDCS. In particular, we explain how we set up a voltage across the tunnel barrier

even though we do not have an ohmic contact to the 2DEG, and how we manage to

detect the tunneling current into localized electronic states. Often we need to make

measurements at very low excitations (<10 µV) and signal levels. In some cases it is

necessary to signal-average more than 250,000 times to recover the tunneling signal

from noise. Ordinary oscilloscopes do not have the data throughput and voltage

resolution necessary to recover the signal from noise. We will describe in detail an

efficient signal averager we used in place of oscilloscopes.

2.1 Limitations of Conventional Tunneling Mea-

surements

Figure 2-1 shows the conventional experimental setup for measuring tunneling into

a two-dimensional (2D) system. Typically one makes an electrical contact at the

edge of the 2D system to apply a voltage across the tunneling barrier and to measure

the tunneling current. The major limitation is that the in-plane conductance (σ2D)

must be much larger than the tunneling conductance (σtunnel). Otherwise the voltage

drops in the 2D plane and the measurement represents transport within the 2D plane

instead of across the tunnel barrier. In the extreme case when an electron tunnels

into a localized state, it is not possible to detect its contribution to the tunneling

current, because it cannot leave the 2D plane through in-plane conduction. As a
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Figure 2-1: Schematic of conventional tunneling measurement of tunneling into the 2DEG.

result, this method cannot measure tunneling current into localized states. It does

not work when the 2D in-plane conductance is low, such as at low electron densities

or at magnetic fields when the 2DEG is in the quantum Hall regime.

Tunneling experiments into metal films were performed in the 1980’s [8, 9, 10,

11, 12, 13, 14]. In some cases, a superconducting metal film is chosen to get around

the in-plane resistance problem [9]. Tunneling experiments become even more chal-

lenging if one wants to study semiconductor 2D systems in which the quantum Hall

effect occurs. 2D systems in semiconductors are embedded within the semiconductor

crystal. To make an ohmic contact to the 2D system one typically puts layers of

specific metals on the surface of the semiconductor. It is necessary to anneal the

metal at a high temperature so that it diffuses from the crystal surface into the 2D

system. It is very difficult to control precisely how deep the metal penetrates. When

one achieves good electrical contact to the 2DEG, most of the time the metal has

diffused all the way to short out the tunnel barrier, making it impossible to measure

tunneling. Eisenstein [15] uses a clever selective gating technique to make separate

ohmic contacts to two 2D systems in GaAs. However, there still is the problem of

in-plane resistance. For the reasons mentioned in this section, there are only a lim-

ited number of tunneling experiments on 2D electron systems. The motivation of this
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Figure 2-2: TDCS measures tunneling without making any ohmic contacts to the 2DEG.

thesis is to develop an alternative experimental technique capable of measuring the

tunneling I-V characteristics at arbitrary low in-plane conductance.

2.2 Sample Design

Using TDCS, we measure the tunneling current using a slightly different approach. As

shown in Figure 2-2, we do not make ohmic contacts to the 2D system. We sandwich

it between two capacitor plates, close to the bottom one to allow tunneling. There

is no charge transfer between the quantum well and the top electrode. Instead of

performing a DC measurement as in Figure 2-1, we apply sharp voltage steps to our

structure to induce tunneling of electrons back and forth across the tunnel barrier.

We deduce the tunneling current by analyzing the time response of the structure to

the voltage steps. A DC bias to the top gate repels or attracts electrons into the

2D sheet, permitting variation of the 2D electron density. The 3D substrate remains

conducting all the time. Electrons can tunnel everywhere into the 2DEG even when

the in-plane conductance is very low.

Figure 2-3(a) shows the structure of our first samples. The sample is a GaAs/AlGaAs
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Figure 2-3: (a) Structure of our samples with typical layer thickness. (b) Conduction band energy
diagram of our samples. (c) Equivalent circuit diagram of our samples.
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heterostructure grown by molecular beam epitaxy. Figure 2-3(b) displays the corre-

sponding conduction band diagram. Our substrate is n+ doped GaAs. On top of

that we grow an AlGaAs tunnel barrier followed by a GaAs quantum well, which

defines our 2D system. The AlGaAs blocking barrier is thick and prevents conduc-

tion between the 2D system and the GaAs top electrode. For these early samples,

we introduce dopants in the AlGaAs to provide electrons for the quantum well. The

GaAs cap layer is undoped, with chromium-gold Schottky contact acting as the gate.

We perform our measurement on a mesa of 400 µm. Our recent samples contain

modifications to the above design and have less disorder. We will describe these high

mobility samples in Chapter 5.

Figure 2-3(c) shows the equivalent circuit elements representing the sample. We

model the tunnel barrier by a capacitor Ctunnel in parallel with tunneling resistance

Rtunnel. Since there is no charge transfer between the quantum well and the top

electrode, we model the blocking barrier as a single capacitor Cblock. As we discussed

in Chapter 1, the tunneling current into a 2DEG can be strongly suppressed at small

voltages due to electron-electron interactions. Hence Rtunnel is not a linear circuit

element. In Figure 2-3(c) we deliberately label it as Rtunnel(V ) to emphasize the fact

that its value depends on the voltage V across the tunnel barrier. In Chapters 3

and 4, we study the effect of electron-electron interactions in the 2DEG through the

dependence of the Rtunnel on V.

Earlier experiments by Ashoori [7] used AC capacitance measurements over a

broad frequency range to measure “zero-bias” tunneling in similar samples. In ”zero-

bias” tunneling (also known as “equilibrium tunneling”), one applies excitation volt-

ages with amplitude less than the thermal energy kT . Rtunnel is independent of

excitation voltage in this linear response limit and behaves as a linear circuit ele-

ment. Therefore one can extract Rtunnel by fitting the frequency dependence of the

sample impedance with suitable choices of the three circuit elements Ctunnel, Rtunnel

and Cblock in Fig. 2-3(c). However, experimental data obtained using excitation volt-

ages larger than kT are difficult to interpret because the tunneling I-V characteristic

is often non-linear and/or asymmetric. In fact, one of the motivations for this thesis
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is to develop a technique capable of measuring the non-ohmic Rtunnel(V ) at large

excitation voltages and extracting the complete I-V characteristics for tunneling.

The simple equivalent circuit of the sample in Fig. 2-3(c) represents the sample

well under most conditions. However, for magnetic fields at which a 2DEG with

low level of disorder is in the ν = 1 state (with the lowest Landau level filled with

electrons with a single spin direction), we find unexpectedly that electrons tunnel

at two distinct rates. The equivalent circuit of the sample in Fig. 2-3(c) does not

describe the sample adequately. We believe the double tunneling rate phenomenon

arises from non-equilibrium spin accumulation and will discuss this effect in detail in

Chapter 5.

2.3 Basic Concepts

This section explains the basic concept of TDCS. We will discuss how we set up a

voltage across the tunnel barrier and detect the tunneling current in the samples

described in the last section.

2.3.1 Setting up Voltage across the Tunnel Barrier

Here we describe how we set up a voltage across the tunneling barrier even though

we do not have ohmic contacts to the sample. Figure 2-4 shows the time evolution

of the conduction band energy during one cycle of measurement. We start with the

2D system in equilibrium with the 3D electrode and their Fermi energies aligned. At

time t = 0, we apply a sharp voltage step to the bottom electrode. This voltage drops

evenly across the sample and creates a voltage offset on the two sides of the tunnel

barrier, inducing a tunneling current. As electrons tunnel, this offset equilibrates and

we record the decay signal in real time. At sufficiently long times there will be no

potential difference between the 2DEG and 3D substrate.

The reason that we are able to extract the tunneling IV is that before we applied

the voltage step, the entire 2D plane is at the same potential. Immediately after we

applied the voltage step, no extra charge has entered the 2D system and the 2D plane
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Figure 2-4: Evolution of the conduction band energy of our sample during cycle of measurement.
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remains equipotential even when the in-plane conductance is very low. Immediately

after the voltage step is applied, the voltage across the tunnel barrier is simply a

fraction of the voltage step applied. Its precise value depends on the thickness of our

layers:

Vbarrier =
xw

xw + xg

Vstep (2.1)

where xw is the separation between the quantum well and the bottom 3D substrate

and xg is the separation between the quantum well and the top gate. Therefore we

managed to set up a known voltage across the tunnel barrier, but only for a brief

instant because this voltage difference decays with time.

2.3.2 Detecting the Tunneling Current

To measure tunneling, we need to create a voltage difference across the tunnel barrier

and detect the current. In the last section we discuss how to set up a voltage when

we do not have an ohmic contact to the sample. Next I will describe how we measure

the tunneling current.

Figure 2-5 shows the capacitance bridge that we used to measure the tunneling

current. The three sheets on the left represent our sample, the top electrode, the

bottom electrode and the 2D system of interest. When electrons tunnel from the

3D substrate into the 2D system, they repel electrons in the top electrode, leading

to a displacement current ID flowing out. ID charges a standard capacitor CS of

known value and we detect the voltage VS across CS using a high electron mobility

transistor (HEMT). We record the output of the transistor as a function of time.

Figure 2-6b shows a typical time trace recorded. The current flowing into a capacitor

is proportional to the time derivative of the voltage across it. Therefore, we can

deduce the tunneling current by taking the initial time derivative of our recorded

signal:

Itunnel = −CΣ
dVS

dt
(2.2)

Again the proportionality constant CΣ depends on the thickness of the layers in our

sample. Appendix A gives a detailed derivation for Eq. 2.2.
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Figure 2-6: (a) The black curve is raw data recorded with no signal averaging when an excitation
voltage step of 8 µV is applied only once. The white curve is obtained by repeating the voltage
step 262,144 times and averaging the result to recover the signal from noise. (b) The white curve in
(a) is re-plotted using a finer voltage scale. We extract the initial slope of the trace to obtain the
tunneling current.
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Even when electrons tunnel into localized states in the 2D plane, we have no

trouble detecting the current because they repel electrons on the top plate. We

call our technique “Time Domain Capacitance Spectroscopy” since we measure the

electron tunneling process in real time and we set up the voltage across the tunnel

barrier capacitively.

2.3.3 Data averaging

One of the main difficulties of this experiment is that it is a broad band measurement

and we are susceptible to many types of noise. In most cases the signals are very small.

The black curve in Fig. 2-6a shows the signal obtained if one applies a voltage step

to the sample once and record the response using an oscilloscope. All the tunneling

signal is buried in noise. To recover the signal, it is necessary to repeat pulsing the

sample with voltage steps and average the time responses. After averaging 262,144

times, we recover the tunneling signal that we are interested in. We show the averaged

trace as the white curve in Fig. 2-6 and plot the same trace using different vertical

scale in Fig. 2-6b. We then extract the initial slope of the averaged trace to obtain

the tunneling current.

Ordinary oscilloscopes do not have the data throughput to recover the signal from

noise. After digitizing one trace, a typical oscilloscope needs 10 ms to 100ms to

reset before it is ready for another trigger to digitize a new trace. Depending on

the tunneling rate of electrons, our pulse width can be as short as 200 µs. If we use

an ordinary oscilloscope for digitization, we will spend most of our time waiting for

the oscilloscope to reset after each trace. Therefore we have to use a special signal

averager (EG&G model 9826) in place of oscilloscopes to improve the efficiency of

data acquisition.

The 9826 signal averager plugs into two adjacent ISA slots on a personal computer.

It is capable of adding a new 8 bit digitization of the input signal to a 16 bit sum every

2 ns and will accept a new trigger within 600 ns of completion of the preceding sweep.

It is thus possible to signal average more than 1000 times faster than conventional

oscilloscopes. After the summation of 256 sweeps by the averager, the sum is then
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Figure 2-7: I-V characteristics for tunneling into the 2DEG at a density of 1.9× 1011cm−2 and at
a temperature of 25mK for B = 0T (circles)and B = 8T (squares).

transferred to the on-board buffer memory. Data in the buffer memory can be read

into computer memory without interrupting the acquisition of a new averaged trace.

Additional averaging is then performed by software to sum the traces in computer

memory.

In Appendix B, we describe a “dithering” technique that increases the voltage

resolution of the averager from 8 bits to 16 bits. Both the signal averager and the

dithering scheme are crucial components of this experiment. We would not have been

able to obtain the data in this thesis without them.

2.3.4 Typical I-V curves

Figure 2-7 shows typical I-V curves that we obtained. To obtain one point on an

IV curve we apply voltage steps of certain amplitude many times and average the

signal until we can extract its initial time derivative accurately. To get another point
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on this IV curve, we need to apply a voltage step of different amplitude and repeat

this process. We emphasize these are I-V curves obtained without making electrical

contacts to the system we are studying.

At 0T, the I-V curve is linear or ohmic around zero-bias. When we increase the

magnetic field to 8T, the tunneling current is clearly suppressed at small voltages

compared to the zero field value. The I-V characteristic becomes non-linear. This

deviation from ohmic behavior is due to the development of a gap at the chemical

potential in the single-particle density of states created by electron-electron interac-

tions in a magnetic field. We will describe a detailed study of this tunneling gap using

TDCS in Chapter 4.

2.4 Schematic of Setup

In the last section, we described the basic concepts of TDCS. We will look at some

technical details of TDCS in this section. Figure 2-8 shows the essential elements

of the computer- controlled capacitance bridge. The electrical components inside the

small dotted box are equivalent circuit elements representing the sample, as discussed

in section 2.2 and Fig. 2-3. The double channel waveform generator applies voltage

steps of opposite polarity to the top electrode of the sample and to one plate of the

standard capacitor CS. The other plate of CS and the bottom electrode of the sample

are electrically connected and the voltage Vb at this balance point b is fed into the

gate of a high electron mobility transistor (HEMT). Through a 180 MΩ resistor Rbias,

we establish the DC bias of the HEMT. This DC bias is kept constant throughout

the measurement. We chose such a large resistance so that the RC time at the input

of the HEMT is longer than the RC time for tunneling in our samples. Components

inside the large dotted box, including the sample, CS, the HEMT and Rbias, are placed

within 1 cm of one another. The purpose is to reduce the stray capacitance at the

HEMT input, as well as minimize ‘ringing’ in the circuit due to the sharp voltage

steps we applied. During measurement, the components in the large dotted box are

cooled to the base temperature of ∼50 mK in the mixing chamber of our cryostat.
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Figure 2-8: Basic schematic of computerized capacitance bridge. The electrical components inside
the small dotted box represent the sample. The components inside the large dotted box are placed
on the cryogenic probe together with the sample and are cooled to the base temperature of the
dilution refrigerator during measurement.
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A preamplifier located outside the cryostat further amplifies the output signal

from the HEMT. We then record the preamplifier output using the signal averager

mounted inside the computer. The signal averager is synchronized to the double

channel waveform generator, which provides voltage steps of opposite polarity at

precisely the same instant (within 1 ns) to the top electrode of the sample and the

other plate of CS. In section 2.4.1 we will describe the individual components of

the double channel waveform generator. For each data point on an I-V curve, the

computer sets the appropriate pulse amplitude of voltage excitation on both channels

of the pulse generator. The averager records the corresponding tunneling signal from

the sample. We then extract the initial slope of the time trace to deduce the current.

For another point on the I-V curve, the computer sets the amplitude of voltage

excitation to a different value and repeats the process.

2.4.1 Pulse Sequence

So far we considered the excitation voltage applied to the sample as sharp voltage

steps. In practice, we apply a sequence of pulses repetitively to the sample. Figures 2-

9a and b display a single period of the two pulse sequences of opposite polarity applied

to the standard capacitor CS and the sample respectively. Each period of excitation

consists of four voltage steps. For t < t1, the sample is at a specific density No set by

the DC bias, with the 2DEG in equilibrium with the 3D electrode. At t = t1, we apply

the first voltage step. For t1 < t < t2, electrons tunnel into the 2D system, leading to

a voltage change at the input of the transistor, as we described in sections 2.3.1 and

2.3.2. Figure 2-9d shows the response recorded by the data averager.

Immediately before t = t2, the density of the 2DEG is higher than the original

density No because additional electrons have tunneled into the 2DEG. The amount

of deviation depends on the amplitude of the voltage step Vsample as well as the

thermodynamic density of states on the 2DEG. At time t = t2, we apply a second

voltage step of opposite polarity to the first voltage. As a result, electrons tunnel out

of the 2DEG back to the 3D electrode. The purpose of the second voltage step is to

reset the 2D electron density back to No. At t = t3 we apply the third voltage step

37



which induces electron to tunnel out of the 2DEG at the original density No. Similar

to the voltage step at t = t2, the voltage pulse at t = t4 resets the 2DEG back to

the original density No. We repeat this pulse sequence to recover the tunneling signal

from noise through signal averaging, and then extract the initial time derivative of

the signal at t = t1 and t = t3 to obtain the tunneling current.

2.4.2 Measuring Low Frequency Capacitance by Balancing

the Bridge

In this subsection, we describe how we balance the capacitance bridge to obtain the

low frequency capacitance of the sample using TDCS.

One of the reasons that we apply voltage steps of opposite polarities to the sample

and standard capacitor CS is to compensate for signals that are not related to tun-

neling. Figures 2-9c and d show an unbalanced trace and a balanced one respectively.

For the unbalanced trace, the signal voltage decays to a non-zero value Voffset even

after the tunneling process has completed. Balancing refers to the process of set-

ting Voffset to zero by tuning the amplitude of the voltage step (Vstandard) applied to

CS. Through balancing, the voltage range of the signal in fig. 2-9c is clearly reduced

compared to fig. 2-9d. This allows us to operate the averager at a higher sensitivity.

The second reason for balancing the bridge is to extract the low frequency capac-

itance Clow of the sample. At a time t >> τ (where τ is the tunneling relaxation

time) after application of the voltage step, the 2DEG has come into equilibrium with

the 3D electrode. By adjusting the amplitude Vstandard while keeping Vsample fixed,

we can null the voltage at the balance point b of the capacitance bridge for long time

scales t >> τ when the tunneling process has completed:

CSVstandard = ClowVsample

Clow =
Vstandard

Vsample

CS (2.3)

Equation 2.3 follows simply from considering the sample and CS as DC voltage di-
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Figure 2-9: This figure shows excitation voltage of opposite polarity applied to (a) the standard
capacitor and (b) the sample during one cycle of TDCS measurement. Electrons tunnel into and
out of the sample respectively during the first and third pulses. The second and fourth pulses resets
the 2D electron density to the initial value. In (c) we show a typical unbalanced recorded sweep.
We balance the bridge by adjusting the step amplitude Vstandard to obtain the sweep in (d).
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viders of the total voltage Vsample + Vstandard across them for t >> τ . Hence we can

deduce Clow directly from Vstandard required for balancing. The appropriate Vstandard

is determined by the computer and the algorithm for achieving balance is similar to

the one in Ref. [7] for balancing a computer controlled AC capacitance bridge.

Ashoori [7] calculated the relationship between Clow and the thermodynamic den-

sity of states (DOS) at the chemical potential of 2DEG. The essential physical picture

is as follows. When the DOS of the 2DEG is zero, no electrons tunnel into the 2DEG

when the voltage step is applied. In this limit, Clow is simply the geometric capac-

itance κA/(xw + xg) between the top and bottom electrode, where A is the area of

the sample and κ is the dielectric constant of GaAs. In the other extreme case when

the DOS of the 2DEG is infinite, the 2DEG completely screens the voltage step (for

t >> τ). In this case Clow equals the geometric capacitance κA/xw between the top

electrode and the quantum well.

Figure 2.10 shows Clow for one of our samples in a magnetic field of 3T. At the

lowest gate biases (below 0V) the quantum well is completely depleted of electrons.

We measure the capacitance κA/(xw +xg) between the top electrode and the bottom

3D substrate. As we increase the gate bias, electrons accumulate in the quantum

well and there is a sharp rise in Clow. The rise in Clow occurs because electrons move

closer to the top electrode. We now measure the capacitance κA/xg between the

quantum well and the top electrode. Beyond this step, the 2D electron density in-

creases with sample bias and Clow displays minima corresponding to the development

of the cyclotron gap between Landau levels where the thermodynamic DOS drops

significantly.

Measurement of the low frequency capacitance Clow is important for characterizing

our samples. It allows accurate determination of the density and the filling factor of

our samples in a magnetic field.

2.4.3 Fitting Procedure

This section describes our fitting procedure to extract the tunneling current from the

initial slope of a time trace. When the tunneling resistance Rtunnel is independent
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Figure 2-10: This figure plots the low frequency capacitance as a function of sample bias. Electrons
start to accumulate in the quantum well at about 0 mV. When the chemical potential of the 2DEG
falls between two Landau levels, Clow develops minima. The first minimum at 75 mV occurs when
the first Landau level is filled with electrons of one spin direction. The second minimum at 160 mV
occurs when the first Landau level is filled with electrons of both spin directions.
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of voltage across it and behaves as a linear circuit element (for instance, in the zero

magnetic field I-V curve in Fig. 2-7), the time trace is a pure exponential decay.

However, we do not take the initial slope of the time trace directly. Instead we first

subtract the baseline voltage so that the time trace decays to zero at long time scales.

We then take the logarithm of the time trace. Figures 2-11a and b show a trace

in linear and logarithmic voltage scale when Rtunnel is independent of voltage. The

initial time derivative of the time trace is equal to the product of the initial voltage

and the initial time derivative of the logarithm of the time trace:

dV

dt
|t=0 = V (t = 0)

d ln V

dt
|t=0 (2.4)

If the time trace decays exponentially:

dV

dt
|t=0 = −V (t = 0)

1

τ
(2.5)

Here, we define 1/τ = −d ln V/dt as the relaxation time of the decay. For a voltage-

independent Rtunnel, τ is also independent of time. In this case, we can obtain the

relaxation time by fitting to any part of the time trace. In practice, we deduce that

Rtunnel is voltage independent if the relaxation time is constant.

Figures 2-11c and d show the drastically different time traces for a voltage de-

pendent Rtunnel when a magnetic field of 4T suppresses tunneling at small excitation

voltages. The relaxation rate 1/τ decreases with time and we must use the initial

relaxation rate to obtain the tunneling current. Typically we extract the relaxation

rate when the time trace decays to a voltage between 96% and 86% of its initial value.

2.4.4 Summary

In this Chapter, we described the concept and some technical details of “time do-

main capacitance spectroscopy” (TDCS). TDCS measures the complete tunneling

I-V characteristics into mesoscopic semiconductor systems such as 2DEG or quantum

dots without making ohmic contacts to them. In the following chapters, we will use
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Figure 2-11: (a) Typical signal at the input of the HEMT at B = 0T , using 3.3 mV voltage
steps. (b) Same signal in (a) plotted on a semi-log scale, demonstrating the pure exponential decay
when the tunneling resistance is voltage-independent. (c) Signal at B = 4T for a voltage dependent
tunneling resistance. (d) Same signal in (c) plotted on a semi-log scale. The relaxation rate decreases
as the signal decays. Note that the time scale is different from the plot in (b). The thick straight
line is a linear fit to the initial part of the decay.
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TDCS to measure tunneling into a 2DEG in various regimes.
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Chapter 3

Zero-bias Coulomb Anomaly for

Tunneling into disordered 2D

Electronic Systems

In this Chapter, we use tunneling spectroscopy to study the effects of electron-electron

interactions on the single-particle density of states (DOS) of a disordered 2D electron

system.

For non-interacting electrons in a disorder-free 2D system, the wavefunctions are

plane waves and the DOS is a constant function of energy. Even though inclusion of

electron-electron correlations by the Fermi-liquid theory may lead to renormalization

of the DOS, the DOS nevertheless remains a smooth function of energy and contains

no singularities near the Fermi level.

An important assumption of Fermi-liquid theory is the spatial homogeneity of the

system. The presence of disorder, such as impurities and defects, leads to scattering

of the electrons and has a profound effect on the physical properties of the elec-

tronic system. When the degree of disorder is strong so that the Fermi wavelength

is comparable to or less than the mean free path l (kF l ∼ 1, where kF is the Fermi

wavevector), the wavefunctions change their nature completely and become localized,

a phenomenon known as Anderson localization [16]. For localized electrons, the in-

clusion of long-range Coulomb repulsion results in the Coulomb gap [5]: the vanishing
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of the DOS at the Fermi level.

When the disorder is weak such that the mean free path is much larger than

the Fermi wavelength, the wave function remains extended and electrons move along

classical trajectories between collisions. In order words, electrons diffuse instead of

propagate freely as plane waves. The diffusion constant decreases with increasing

degree of disorder. As a result an electron stays longer in a certain region in space

where it can interact with other electrons. Disorder leads to poorer screening and

therefore enhances interaction effects among electrons. Altshuler, Aronov and Lee

[6] treated the disordered Fermi liquid problem in 2D by performing a perturbation

theory calculation to lowest order in the interaction strength, valid in the limit kF l À
1 (or equivalently EF τ À h̄, where EF is the Fermi energy and τ is the scattering

time). They predicted that interaction effects in a 2D disordered metal lead to the

development of a logarithmic singularity in the single-particle DOS n(E) near the

Fermi energy:
δn(E)

n(E)
=

h̄

2πEF τ
log(

Eτ

h̄
) (3.1)

This singularity in the single particle DOS results in suppression of tunnel conduc-

tance G(V ) into the 2D system at small voltages [17], a phenomenon commonly known

as the zero-bias Coulomb anomaly in tunneling:

G(V )−G(Vo)

G(Vo)
=

e2R

4π2h̄
log(

V

Vo

) log(2ksd) (3.2)

Here, Vo = h̄/eτ , ks is inverse screening length, d is the distance between the 2DEG

and the source electrode from which electrons tunnel and R is the in-plane resistivity

of the 2DEG. The extra log factor arises from screening by the source electrode.

Image charges in the source electrode renders the interactions in the 2DEG dipolar

at distances larger than d.

Several research groups [8, 9, 10, 11, 12, 13, 14] have performed tunneling mea-

surements of quasi-2D disordered metal and semi-metal films since early 1980’s and

observed the predicted logarithmic dependence of tunneling conductance with volt-

age. Although the Coulomb anomaly for tunneling has been thoroughly studied in
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metal films, to our knowledge there have not been any experiments demonstrating

the logarithmic correction to the DOS in semiconductor 2D systems. The major dif-

ficulty in performing tunneling measurements of 2D systems is the requirement that

the in-plane conductance must be much higher than the tunneling conductance. In

addition to the in-plane conductance problem, in semiconductor 2D systems there is

the difficulty of making separate electrical contacts to the 2D system and the source

electrode providing the tunneling electrons, as we mentioned in Chapter 2. Eisenstein

[15] used a selective gating technique to make separate contacts to two 2DEG’s in

GaAs. However, in these double quantum well structures, the main feature in the

tunneling spectrum is a peak at zero bias due to the requirement of conservation of

transverse (in-plane) momentum in tunneling.

Using TDCS that we described in Chapter 2, we measure tunneling from a 3D

substrate to a 2DEG in GaAs at arbitrary low in-plane conductance without making

an electrical contact to the 2DEG. Transverse momentum conservation for tunneling

between the 2DEG and the 3D substrate only produces a smooth variation of the

tunneling conductance with voltage [18]. This allows us to perform a comprehensive

study of the singular, logarithmic corrections to the tunneling conductance near zero

bias. We describe our results in this Chapter.

3.1 Origin of the Logarithmic Correction to the

single particle DOS: Qualitative Picture

In this section, we present a qualitative picture for the logarithmic corrections to

the single-particle DOS in 2D systems. One can refer to the calculation of the ex-

change contribution to the self energy by Altshuler, Aronov and Lee [6] for a rigorous

derivation.

Consider a particle undergoing diffusion in 2D. There is a finite probability that

it returns to the original position r = 0. In 2D, the probability that the particle has
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BA

Figure 3-1: Two particles undergoing diffusive motion have a finite probability of a second en-
counter. This figure shows the trajectories of motion of two particles intersecting at point A and
later at point B. If the time for the particles to go from A to B is small compare to the inverse of
their energy difference, they will interfere.

traveled a distance r after a time t is:

P (r, t) =
1

4πDt
e−r2/4Dt (3.3)

where D is the diffusion constant. Now consider two particles with energy difference ε

that interact at point A in Fig. 3-1. Since the particles undergo diffusive motion, there

is a finite probability that they may encounter each other again, for instance, at point

B in Fig. 3-1. An expression similar to Eq. 3.3 applies to the relative displacement

between the two particles. Due to the uncertainty principle, the energy difference ε of

the two particles cannot be resolved during a time shorter than h̄/ε. For interaction

processes occurring within this time interval, the two states essentially have identical

energies and will therefore interfere at point B, where their amplitudes instead of

intensities add.

For simplicity, let us assume that there is a point-interaction between the two

particles, characterized by a coupling constant C. Due to the interference effects,

the effective coupling constant Ceff differs from the bare constant C by a factor of

(1 + α):

Ceff = C(1 + α) (3.4)
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where α is the probability that two particles will encounter each other again. To

calculate α, let us consider particles originating from a region with the size comparable

to the Fermi wavelength λF at the Fermi velocity vF . The number of particles leaving

the region in time interval dt is NλF vF dt, where N is the density of particles in 2D. At

a particular instant of time t, a fraction of these particles, proportional to P (r = 0, t),

will encounter each other again. We obtain α by integrating this probability over time:

α =
∫ h̄/ε

τ
P (r = 0, t)λF vF dt (3.5)

=
∫ h̄/ε

τ

λF vF

4πDt
dt (3.6)

∼ h

2Efτ
log

h̄

ετ
(3.7)

where Ef is the Fermi energy of the 2D system. We obtain Eq. 3.7 from Eq. 3.6 using

the following relations:

D =
v2

F τ

2
=

EF τ

meff

(3.8)

meffvF =
h

λF

(3.9)

where meff is the effective mass of electrons. The upper and lower limits of integra-

tion in Eq. 3.5 require some explanation. In Eq. 3.5, the lower limit of integration is

the scattering time τ during which each particle on average scatters once. For time

intervals shorter than τ , the particles undergo ballistic motion instead of diffusion so

that Eq. 3.3 does not apply. They have a very small probability of interfering in a

second encounter because on average each particle is scattered less than once. The

upper limit h̄/ε is the time interval during which the two electronic states have indis-

tinguishable energies so they will contribute to the interference correction. Assuming

that relative corrections to all physical quantities are proportional to α, we find that

the corrections to the single-particle density of states take a logarithmic form in 2D:

δn

n
∝ h̄

EF τ
log

ετ

h̄
(3.10)

We emphasize that the above picture is only a qualitative description intended to
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give the readers some intuition on the logarithmic energy dependence in the single-

particle DOS. Nevertheless it highlights the importance of the quantum mechanical

nature of the electronic states in determining the physical properties of a diffusive

system.

3.2 Samples

In Chapter 2, we described time domain capacitance spectroscopy (TDCS). TDCS

enables us to measure the tunneling current into a 2DEG at arbitrary low in-plane

conductance. We are able to measure, for the first time, the contribution of localized

states to the tunneling current. Furthermore, TDCS measures the complete tunneling

current-voltage characteristics without making an ohmic contact to the 2DEG.

Figure 3-2 shows the essential structure of samples used in TDCS measurement.

The samples are GaAs/AlGaAs heterostructures grown by molecular beam epitaxy.

In this chapter, we present data from two samples: sample A and sample m060296a.

The substrate is n+ doped GaAs for both samples. First, we grow a GaAs spacer

layer on top of the substrate. Then we grow an AlGaAs tunnel barrier, followed by

a GaAs quantum well, which defines the 2D system. The AlGaAs blocking barrier is

thick and prevents conduction between the 2D system and the GaAs top electrode.

We introduce dopants in the AlGaAs to provide electrons for the quantum well. The

AlGaAs regions in both samples have 30% aluminum concentration.

Sample A was grown by S. Wright and has been studied extensively using AC

capacitance techniques [7, 19, 20, 21]. The concentration of silicon dopants in the

degenerately n-doped substrate is 1 × 1017cm−3. The thickness of the layers, from

bottom to top, are as follows: 30 Å GaAs undoped spacer, 160 Å AlGaAs undoped

tunnel barrier, 150 Å GaAs undoped quantum well, 1550 Å AlGaAs blocking barrier

and a degenerately n doped GaAs cap layer. In the AlGaAs blocking barrier, dopants

are introduced in the region from 100 Å to 200 Å away from its lower boundary to

provide electrons for the quantum well. A gold-germanium ohmic contact to the GaAs

cap layer allows variation of 2D electron density from depletion to 6×1011cm−2. The

50



Cap Layer GaAs 

Blocking barrier AlGaAs 

Quantum Well 

Tunneling barrier 

Substrate n+ GaAs 

undoped AlGaAs 

undoped GaAs 

spacer undoped GaAs 

Figure 3-2: The essential layer structure of the samples.
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circular mesa has a diameter of 400 µm.

Sample m060296A was grown by Prof. M. L. Melloch at Purdue University. The

substrate has silicon dopant concentration of 5 × 1017cm−3. The thickness of the

layers, from bottom to top, are as follows: 50 Å GaAs undoped spacer, 143 Å AlGaAs

undoped tunnel barrier, 150 Å GaAs undoped quantum well, 550 Å AlGaAs blocking

barrier and a 50 Å undoped GaAs cap layer. In the AlGaAs blocking barrier, dopants

at a concentration of 5× 1017cm−3 are introduced in the region from 200 Å to 350 Å

away from its lower boundary to provide electrons for the quantum well. A chromium

gold Schottky contact to the GaAs cap layer allows variation of 2D electron density

from depletion to 3× 1011cm−2. The circular mesa has a diameter of 300 µm.

Appendix C describes the fabrication process for the samples.

3.3 Experimental Result

In this section we describe our observation of the Coulomb anomaly for tunneling

into a 2DEG in GaAs, measured with TDCS that we described in Chapter 2.

Figure 3-3 shows the tunneling conductance as a function of voltage for sample

A. Through a DC bias applied to the top electrode, we change the density in the

2DEG by repelling or attracting electrons into the quantum well. The electron den-

sities are determined by measuring the sample capacitance at low frequencies in a

perpendicular magnetic field, as described in section 2.4.2 and Fig. 2-10. Minima

in the capacitance develop when an integer number of Landau levels are filled with

electrons. Since the degeneracy of the Landau levels is a known quantity, we can de-

duce the electron density in the 2D system by locating the sample bias at which the

capacitance minima occur. We sweep the magnetic field back to 0T for the tunneling

conductance measurement in Fig. 3-3. Unless otherwise specified, the magnetic field

is maintained at 0T for data presented in this chapter.

In Fig. 3-3, the density for each successive curve from the top decreases by 1.5×
1010cm−2. Around zero bias, there is clear suppression of tunneling conductance.

This suppression becomes stronger as the electron density is decreased.
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Figure 3-3: Tunneling conductance vs. voltage for different electron densities in sample A at a
temperature of 30 mK. The electron density decreases by 1.5× 1010cm−2 for each successive curve
from the top. There is clear suppression of tunneling conductance at small voltages.
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3.3.1 Explanation of the Asymmetry in the Conductance

Curves

Before we proceed to demonstrate that the tunneling conductance suppression is loga-

rithmic in voltage as predicted by theory of electron-electron interactions in disordered

2D systems, let us explain the features at large energies, namely the asymmetry of the

conductance curves. For all densities shown in Fig. 3-3, the tunneling conductance

decreases at large negative voltages (< −3mV ). In a perfectly clean 2D system, the

thermodynamic DOS is constant as a function of energy. In the presence of disor-

der, the thermodynamic DOS decreases gradually to zero rather than drops abruptly,

forming a “band tail”. This deviation of thermodynamic DOS from the constant value

corresponds to electrons forming isolated islands in the disordered 2D system at low

densities, decreasing the effective occupation area of the quantum well by electrons.

The decrease in tunneling conductance at negative voltages simply reflects the “band

tail” in a disordered 2DEG.

At large positive voltages, the tunneling conductance again decreases for a different

reason. This decrease in tunneling conductance starts at lower voltages for data

taken at higher densities. We account for this decrease by transverse momentum

conversation for tunneling between the 2DEG and 3D electrode that was studied in

detail by Lebens [18]. Consider the two systems in momentum space, where tunneling

occurs between a 2D Fermi disk and a 3D Fermi sphere, with Fermi wavevectors k2D

and k3D respectively. In our experiment, k3D remains constant while k2D increases

as the voltage applied at the top electrode attracts electrons into the quantum well.

When k3D > k2D (Fig. 3-4a), there are states on the 3D Fermi sphere from which

electrons can tunnel into the 2DEG while conserving both energy and transverse

(perpendicular to the direction of tunneling) momentum. On the other hand, when

the 2D electron density increases so that the 2D Fermi disk is larger than the 3D

Fermi sphere (Fig. 3-4b), tunneling cannot take place if we require both conservation

of energy and transverse momentum. In the presence of disorder which gives rise to

scattering, such tunneling events can occur, albeit with a reduced probability, leading
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Figure 3-4: (a) When k2D < k3D, there are available states on the Fermi sphere with the same
transverse wavevector as the states on the edge of the Fermi disk. (b) When k2D < k3D, there are
no states on the Fermi sphere with identical transverse wavevector as the states on the edge of the
Fermi disk. Tunneling cannot take place if we require both conservation of energy and transverse
momentum.
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Figure 3-5: (a) The circles are tunneling conductance vs. voltage at N = 1.12 × 1011cm−2. The
line is an 8th order polynomial fit to data points at voltages |V | > 3mV . (b) Normalized conductance
obtained by dividing the data points in (a) by the polynomial fit.

to the decrease in tunneling conductance at larger positive voltages.

3.3.2 Normalization Procedure and Logarithmic DOS Cor-

rection

In order to compare the suppression of tunneling near zero bias for different conduc-

tance curves, we need to eliminate the background conductance variations at large

voltages. We do this by fitting a high order polynomial to the conductance data

in Fig. 3-3 for voltages |V | > 3mV where the tunneling suppression is negligible,
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Figure 3-6: Normalized tunneling conductance vs. voltage on a logarithmic horizontal scale. The
electron density decreases by 1.5 × 1010cm−2 for each successive curve from the top. The arrows
indicate the voltage Vo = h̄/eτ corresponding to the inverse scattering time for each density.

as shown in Fig. 3-5a. Since the Coulomb anomaly is a fractional correction to the

conductance (Eq. 3.2), we divide the data points by the polynomial fit to obtain the

normalized conductance displayed in Fig. 3-5b.

We carry out a similar procedure for each conductance curve in Fig. 3-3 and plot

the normalized tunneling conductance on a semi-log voltage scale in Fig. 3-6. The

tunneling conductance varies logarithmically for two decades in voltage as predicted
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by the perturbation theory on a disordered Fermi liquid:

G(V )−G(Vo)

G(Vo)
=

e2R

4π2h̄
log(

V

Vo

) log(2ksd) (3.11)

=
h̄

4πEF τ
log(

V

Vo

) log(2ksd) (3.12)

where Vo = h̄/eτ corresponds to the inverse scattering time, while ks is the inverse

screening length:

ks =
2πe2

κ

dN

dµ
(3.13)

Here κ is the dielectric constant for GaAs. In Eq. 3.12, the factor log(2ksd) is due

to screening from the bottom 3D electrode. For a 2DEG in GaAs the screening

length is about 50 Å assuming the thermodynamic DOS dN/dµ has a constant value

given by meff/πh̄2. The thickness of the tunnel barrier d is 160 Å in sample A.

Thus the log factor has a value of ∼2 in our samples. As we described earlier,

the thermodynamic DOS dN/dµ decreases at low densities near the “band tail.”

According to Eq. 3.13, the screening length increases correspondingly. For the data

in Fig. 3-6, the thermodynamic DOS decreases by about 30% at the lowest density,

reducing the log factor in Eq. 3.11 by ∼ 20%.

Equation 3.12 follows from Eq. 3.11 using Drude’s formula for resistivity:

1

R
=

Ne2τ

meff

(3.14)

where meff is the effective mass of electrons in GaAs. As the electron density N

decreases, the scattering time τ decreases due to less effective screening of impurities.

Since both N and τ decrease, the in-plane resistivity increases and leads to stronger

suppression of the tunneling conductance near zero bias.

From the slope of the conductance curves in Fig. 3-6, we extract the in-plane

resistivity R using Eq. 3.11 and plot the result in Fig. 3-7a. As expected, the in-plane

resistivity decreases with increasing electron density. However, we cannot compare R

extracted from the above procedure with R directly measured by transport because

there are no direct ohmic contacts to the 2DEG in our samples, as described in
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Chapter 2. Nonetheless, previous experiments [8, 9, 10, 11, 12, 13, 14] have shown that

the values of R obtained independently from tunneling and transport measurements

on the same thin metal film agree very well. We also point out that in our experiment

the logarithmic corrections to the tunneling conductance occur in the same range of

in-plane resistivity as thin metal films.

Using Drude’s result for in-plane resistivity (Eq. 3.14), we calculate the scattering

time τ and plot it as a function of electron density in Fig. 3-7b. As we deplete the 2D

system of electrons, the scattering time decreases due to the reduced effectiveness of

screening. We also mark the corresponding voltage Vo = h̄/eτ with arrows in Fig. 3-6

for each tunneling conductance curve. As we mentioned earlier, Eq. 3.12 is the result

of a perturbation theory calculation on a disordered Fermi liquid to lowest order in

h̄/EF τ , valid in the diffusive regime when h̄/EF τ ¿ 1. The inset of Fig. 3-6 lists this

important parameter EF τ/h̄ for the conductance curves at different densities. At the

lowest density of 6.5× 1010cm−2 in Fig. 3-6, EF τ/h̄ becomes smaller than unity and

deviations of the tunneling conductance from logarithmic voltage dependence appear.

We will return to this limit of low density and high in-plane resistance in section 3.5

3.4 Significance of measuring the Coulomb anomaly

in semiconductor 2DEG

Even though there have been extensive studies of the logarithmic Coulomb anomaly

in disordered films of metal and semi-metal [8, 9, 10, 11, 12, 13, 14], confirmation of

its existence in 2D semiconductor systems is nevertheless important in a number of

ways.

3.4.1 GaAs quantum wells define purely 2D systems

First, quantum wells in GaAs heterostructures define purely 2D electronic systems at

typical measurement temperatures, in contrast to thin metal films that are quasi-2D.

The major difference is in electron density. 2D electron systems in GaAs have much
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obtained by fitting the tunneling conductance curves with DOS corrections from the perturbation
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lower densities compared to thin metal films. For a 150 Å GaAs quantum well, the

energy separation between the first and second subband is about 50 meV, while the

Fermi energy is only 3.6 meV at typical 2D electron density of 1 × 1011cm−2. Since

we perform our measurement at a temperature of < 1 K (equivalent to 0.1 meV),

we can ignore thermal activation of electrons to the second subband and regard the

quantum well as a genuine 2D system. For a metal film of same thickness the electron

density is more than a factor of 10,000 higher, leading to multiple subbands filled.

Nevertheless, the films are quasi-2D provided one measures tunneling for energies less

than Ec = h̄D/a2, where D is the diffusion constant and a is the film thickness. The

reason is that for energies E < Ec, the particles diffuse a distance larger than the

film thickness a during a time t > h̄/Ec and experiences the restricted dimension of

the film, leading to quasi-2D behavior. On the other hand when E > Ec the system

undergoes a dimensional cross-over to 3D since the restricted dimension of the film

has no effect on the particles in the time scale t < h̄/Ec. This dimensional cross-

over alters the voltage dependence of the tunneling conductance from logarithmic to

square-root [8], which is characteristic of 3D diffusive interacting systems. Quantum

wells in GaAs therefore provide more ideal 2D systems for testing the theory of

electron-electron interactions.

3.4.2 Short Screening Length for 2DEG in GaAs

Another major difference between semiconductor 2DEG’s and thin metal films is the

magnitude of the screening length. The screening length in metal films is less than

1 Å. This is much smaller than the thickness of the films, which ranges from 50

Å to 1000 Å. The screening length sets a lower limit for the distance over which

non-equilibrium charge accumulation can occur. Tunneling therefore probes the local

DOS near the surface of metal films. In contrast, the Thomas-Fermi screening length

in GaAs is about 50 Å, comparable to the quantum well thickness of 150 Å. Any

non-equilibrium accumulation of charge introduced by tunneling is evenly distributed

across the width of the quantum well. Observation of the logarithmic correction in

semiconductors therefore provides evidence for the universality of electron-electron
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interaction mechanisms in disordered systems with different physical properties.

3.4.3 DOS Corrections in the quasi-ballistic regime

Recall that the logarithmic corrections to the DOS follow from a perturbation calcula-

tion in the diffusive regime with expansion parameter h̄/EF τ . At energies larger than

h̄/τ from the Fermi energy, which corresponds to time scale of interaction shorter

than the scattering time τ , electron motion changes from diffusive to quasi-ballistic.

Since the perturbation calculation by Altshuler, Aronov and Lee is not applicable

in this quasi-ballistic regime, it was not clear whether there are corrections to the

DOS at energies higher than h̄/τ and if so, what the dependence of the correction on

energy is.

From Eq. 3.12, the size of the logarithmic correction scales with h̄/EF τ . The

Coulomb anomaly in tunneling is therefore universal for 2D systems in different ma-

terials as long as they have the same EF τ . For disordered metal films, it is not possible

to study the 2D quasi-ballistic regime since the dimensional cross-over from 3D to 2D

occurs at a lower energy (∼ 10 meV) than inverse scattering time h̄/τ (> 100meV ).

In contrast, the Fermi energy EF for 2D electron systems in GaAs is a factor of 1000

smaller. The scattering time τ is therefore longer by the same factor for a 2DEG in

GaAs with EF τ identical to a metal film, reducing h̄/τ to a sufficiently low energy so

that we can study the DOS correction in the energy range when the electron motion

changes from diffusive to ballistic.

In Fig. 3-6, the arrows indicate the voltage Vo = h̄/eτ extracted from the slope

of the tunneling conductance at each density. When the electron density increases,

the degree of disorder in the 2DEG is reduced through more efficient screening. As

expected, Vo decreases as the electron density increases, reducing the voltage range

where the diffusive regime is applicable. At a density of 1.44 × 1011cm−2 (EF τ/h̄ =

10.8), the logarithmic voltage dependence of tunneling conductance extends to more

than a factor of 10 beyond h̄/eτ , clearly beyond the diffusive regime.

Recently, Rudin et al. [22] predicted that electron-electron interactions in this

quasi-ballistic regime indeed lead to a significant correction of the DOS even at en-
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ergies larger than h̄/τ . Rudin’s calculation only accounts for the trajectory of an

electron scattered by a single impurity, a valid assumption for interactions on time

scales shorter than the scattering time τ . One might expect that interference effects

we described in section 3.1 would not occur. Nonetheless, the potential of the impu-

rity induces a modulation of electron density around it known as Friedel oscillation.

Friedel oscillation occurs due to the abrupt drop in occupation number of the elec-

tronic states at the Fermi energy. No electrons are capable of screening the impurity

potential at length scales smaller than the Fermi wavelength. The density modulation

has period equal to half the Fermi wavelength and decreases in amplitude as inverse

square of distance from the impurity. Electrons can be scattered by either the Friedel

oscillation or the impurity potential itself. Multiple scattering can therefore occur

even when the electron only encounters a single impurity in the time interval τ . The

correction to the DOS arises from the interference of scattering on an impurity and

on the Friedel oscillation it creates.

3.5 Breakdown of Logarithmic Voltage Dependence

at Large Corrections

The logarithmic Coulomb anomaly in tunneling follows from a perturbative approach

and should be valid as long as corrections to the original DOS are small. In Fig. 3-

6, the tunnel conductance is suppressed by more than 70% near zero bias at low

densities. When corrections to the DOS are so large, one expects the perturbation

calculation to break down. When the argument of a logarithm approaches zero, it

diverges to negative infinity. In fact, there are deviations from logarithmic voltage

dependence of the tunneling conductance at small voltages for EF τ = 1 and 0.83 in

Fig. 3-6.

A semi-classical calculation by Levitov and Shytov [23] extended the perturbation

result to this limit when the tunneling suppression is strong. In this section, we will

describe the semi-classical theory and compare it with our results.
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Figure 3-8: This picture illustrates the spreading of a charge distribution under the Coulomb
barrier. The tunneling electron has energy eV with respect to the chemical potential of the system.
As the size of the charge distribution increases linearly with time, the electrostatic potential energy
decreases. The time that the system spends under the Coulomb barrier depends on the energy eV
of the tunneling electron.

3.5.1 Semi-classical Theory of the Coulomb Anomaly

In the semi-classical picture by Levitov and Shytov [23], electrons traverse the tunnel

barrier and then spread within the 2D system. Since the time that the electron spends

under the tunnel barrier is very small compared to the spreading time, tunneling

effectively injects an extra electron instantly into the 2DEG. Due to the repulsion

from the other electrons, the tunneling electron has a large Coulomb energy and the

system has to relax to accommodate the new electron.

Suppose the tunneling electron has energy eV where V is the voltage applied

across the tunnel barrier. As charges spread to accommodate the new electron, the

system is in a classically forbidden state under the Coulomb barrier (Fig. 3-8). The
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Coulomb energy E(t) of the system decreases with time in the following fashion:

E(t) ∼ e2

r(t)
∼ e2

σt
(3.15)

where σ is the in-plane conductivity of the 2D system. Equation 3.15 follows from

Maxwell’s calculation [24] of the time dependence of the density and potential when

a point charge is injected into a two-dimensional system. Maxwell’s solution is that

the potential in the 2D plane is equivalent to that of a point charge moving normal

to the plane at a velocity v = 2πσ and the size of the charge distribution grows as

r(t) ∼ vt ∼ σt.

Under the Coulomb barrier, the tunneling electron picks up extra action S(t):

S(t) ∼
∫ t

τ
E(t′)dt′ =

e2

σ
log(

t

τ
) (3.16)

The reason to choose the scattering time τ as the lower limit of integration is that

for time shorter than τ , the spreading of the charges is ballistic and cannot be char-

acterized by conductivity σ. Similar to the case when the electronic wavefunction

decays exponentially under a tunnel barrier, the tunneling suppression factor due to

the Coulomb barrier is:

exp(−S(t ' h̄/eV )

h̄
) = exp(−e2 log(h̄/eV τ)

h̄σ
) ∝ V (σo/σ) (3.17)

where σo is the conductance quantum e2/h. A power law dependence of the tunneling

conductance on voltage follows:

G = AV α (3.18)

whose exponent α depends on the ratio of the in-plane conductance σ to the conduc-

tance quantum σo. An exact expression for α in the presence of screening from the

3D electrode is [23]:

α =
σo

σ

1

2π
log(2ksd) (3.19)

where d is the thickness of the tunnel barrier and 1/ks is the screening length.
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In the limit of small correction, the semi-classical calculation of the Coulomb

anomaly is consistent with results from perturbation theory in following way. Let us

rewrite Eq. 3.18 as:

G(V ) = A′(
V

Vo

)α

= A′ exp(α log(
V

Vo

))

' A′(1 + α log(
V

Vo

)) (3.20)

The expansion of the exponential is valid when the conductance correction α log( V
Vo

) is

small. Hence we recover the logarithmic voltage dependence of tunneling conductance

from the perturbation theory.

3.5.2 Fitting Power Law to Data at large tunneling suppres-

sion

Figure 3-9 shows on both linear and semilog scales the normalized conductance mea-

sured at electron density 5 × 1010cm−2. The dotted line is a logarithmic fit and the

solid line is a power law fit. A power law (where the exponent α = 0.34) clearly

provides a better fit to the tunneling conductance over a larger voltage range. From

the exponent of the power law fit, we calculate the in-plane resistance of the 2DEG

to be 28 kΩ using Eq. 3.19.

According to Eq. 3.20, the exponent α of the power law should be identical to

the prefactor of the logarithmic dependence from perturbation theory when the cor-

rections are small. Even though a power law fits the data well, we are not able to

simultaneously fit the data with a power law at low voltages and a logarithm a high

voltages using the same α. In fact, α obtained from the power law fit and logarithmic

fit in Fig. 3-9 have values of 0.34 and 0.2 respectively. The in-plane resistance and

scattering times extracted by the semi-classical result and perturbation theory at this

density are shown respectively in Fig. 3-7 as squares and circles.

One possible explanation for the discrepancy might be that at such low densities,
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Figure 3-9: Normalized tunneling conductance plotted with (a) linear and (b) logarithmic voltage
scales. The crosses are experimental data. The dotted line is a logarithmic fit to the data at
V > 0.3mV using Eq. 3.12 from perturbation theory, with α = 0.2. The solid line is a power law fit
using the semi-classical result (Eq. 3.18), with α = 0.34.
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the 2DEG might become islanded. Both the perturbation theory and semi-classical

calculation requires a well-defined and homogeneous conductivity (over length scales

larger than the mean free path of electrons). However, the parameter EF τ (or equiv-

alently, kF l, where kF is the Fermi wavevector and l is the mean free path) has a

value of ∼ 0.83 for the data in Fig. 3-9. Thus the mean free path is of the same

order as the Fermi wavelength and localization of the electronic states may occur.

For localized electronic states, the main mechanism for electron transport is variable

range hopping and a Coulomb gap [5] that depends linearly on energy (which we will

discuss in detail in Chapter 4) develops in the single-particle DOS. Pikus and Efros

[25] performed a numerical simulation of the DOS for screened Coulomb interaction

among classical localized particles and demonstrated that a pseudo-gap in the DOS

exists even in the presence of screening. Our tunneling conductance data in Fig. 3-

9, which deviate from logarithmic voltage dependence, are likely a precursor of the

Coulomb gap in the limit of strongly localized electrons.

3.6 Enhancement of tunneling conductance by weak

magnetic field

In this section, we describe the effect of a weak magnetic field (< 1T ) on the Coulomb

anomaly in tunneling. As we will discuss in Chapter 4, the familiar effect of a magnetic

field applied perpendicular to the 2D plane is the suppression of tunneling. Here we

demonstrate that at low electron densities where the Coulomb anomaly is observed,

a magnetic field has the opposite effect: it enhances the tunneling conductance.

3.6.1 Zero-bias conductance in a weak magnetic field

So far, data presented in this Chapter involve measurement of the tunneling conduc-

tance as a function of voltage across the tunnel barrier. Since a weak magnetic field

only leads to small variations of the tunneling conductance, measurement of the com-

plete tunneling I-V characteristics would require too much time for data averaging.
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Figure 3-10: Zero-bias tunneling current vs. magnetic field in sample A using an excitation voltage
of 2.2µV at a temperature of 25 mK. The electron density decreases by 7× 109cm−2 for successive
curves from the top.

As a result, we measure only the conductance at zero bias as a function of magnetic

field and density for data shown in this section.

In Section 2.2, we described “zero-bias” tunneling measurements, which corre-

spond to applying excitation voltages less than the temperature kT so that the tun-

neling conductance is not affected by non-linearity of the tunneling I-V. We performed

the measurement at temperatures less than 100 mK, equivalent to voltages of less than

10µV . Hence we measure the tunneling conductance at the bottom of the tunneling

gaps shown in Fig. 3-3.

Figure 3-10 plots the zero bias tunneling current in sample A as a function of
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magnetic field ranging from -2T to 2T. For successive curves from the top, the electron

density decreases by 7× 109cm−2. We determine the electron density by locating the

magnetic field at which the ν = 2 minimum in tunneling current occurs. For instance,

the second curve from the bottom in Fig. 3-10 has the ν = 2 minimum at 1.8 T,

corresponding to electron density of 8.7× 1010cm−2.

For the top curve at a density of 1.13× 1011cm−2, the tunneling current decreases

monotonically as the magnetic field increases. This suppression of tunneling current

by a magnetic field corresponds to the formation of magnetic field induced energy

gap, which we will discuss in detail in Chapter 4. For lower densities, a minimum

in the tunneling current develops at zero magnetic field. In other words, a weak

perpendicular magnetic field enhances the tunneling current when the electron density

is low. The familiar effect of a magnetic field is the suppression of tunneling. Here

we demonstrate that when the electron density is low a weak magnetic field has

the opposite effect and instead enhances the tunneling conductance. The density

range over which the enhancement occurs coincides with the regime in which there

are logarithmic corrections to the tunneling conductance at zero magnetic field. To

verify that the enhancement in tunneling conductance by magnetic field only happens

in the presence of the Coulomb anomaly, we measure a sample with much higher

mobility (the structure of which we will describe in Chapter 5). Due to the small

degree of disorder in the high mobility sample, the Coulomb anomaly occurs at a

density of < 3×1010cm−2, a factor of 5 lower than the sample studied in this chapter.

We found that in the high mobility sample, the tunneling enhancement occurs at

the same density range as the Coulomb anomaly. This suggests that in general the

tunneling anomaly at zero magnetic field and the tunneling enhancement by a weak

field take place in the same density range.

3.6.2 Measurements in perpendicular and parallel fields

A magnetic field affects both the orbital motion and the spin of the electrons. One way

to distinguish which of these two effects is responsible for the tunneling enhancement

is by applying a magnetic field parallel to the 2D plane, since a parallel field only
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Figure 3-11: Tunneling current vs. magnetic field strength for perpendicular (filled circles) and
parallel (hollow squares) magnetic fields for sample m060296A at electron density of 9× 1010cm−2.
There is tunneling enhancement only when the applied field is perpendicular to the 2D plane. The
minimum at 2T corresponds to the formation of the ν = 2 quantum Hall state.
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couples to the spin of the electrons.

Experimentally it is much easier to rotate the sample rather than the magnetic

field. In order to measure the tunneling current in both perpendicular and parallel

magnetic field orientation, we mounted sample m062696A on a special probe which

permits rotation of the sample by 90 degrees without thermally cycling the sam-

ple to room temperature. Figure 3-11 shows the data obtained. Data points in filled

circles and hollow squares represent tunneling current as a function magnetic field ap-

plied perpendicular and parallel to the 2DEG respectively. Figure 3-11 demonstrates

clearly that the enhancement in tunneling conductance only occurs in a magnetic

field perpendicular to the 2D plane but not in a parallel field. This leads us to con-

clude that the enhancement is due to magnetic field effects on the orbital motions

of the electrons. Nevertheless, there still are two such mechanisms that can lead

to enhancement of the tunneling conductance through coupling to the orbital mo-

tions of the electrons. At present, we cannot conclude which mechanism is relevant

in producing the enhancement. We describe both mechanisms in the following two

sub-sections.

3.6.3 Weak localization effects on tunneling conductance

The enhancement of tunneling conductance is reminiscent of the effect of weak local-

ization on the in-plane conductance of disordered 2D systems. Experiments on thin

metal films [26] or silicon MOSFETs [27] demonstrated that due to the quantum me-

chanical interference effects, the in-plane conductance increases with the application

of a small perpendicular magnetic field.

Weak localization arises from the wave nature of conduction electrons [26, 28,

29, 30]. Consider a particle undergoing diffusive motion in Fig. 3-12. It has a non-

zero probability of being scattered back to its original position O. There is an equal

probability for another partial wave to propagate in the opposite direction and follow

exactly the same path, as indicated by the dotted arrow. This partial wave returns to

the origin O with the same phase as the first partial wave. Therefore, in calculating

the probability of particle being scattered back to the origin, the amplitudes rather
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Figure 3-12: A particle undergoing diffusion has a finite probability of returning to its starting
point O. The solid arrows represent one of the possible trajectories. The particle has an equal
probability of taking the time-reversed path indicated by dotted arrows. The two partial waves
returns to the origin O with the same phase, resulting in constructive interference.

than intensities of the partial waves add, leading to constructive interference. The

probability of returning to the origin is twice as large as the classical case. This

coherent backscattering leads to a reduction of the in plane conductance in 2D from its

classical value. Recall that in section 3.1 we described the interference effect between

two interacting electrons. For weak localization, the qualitative picture is similar

except we consider partial waves of a single electron and neglect the interactions with

other electrons.

A perpendicular magnetic field weakens or destroys the phase coherence between

the two partial waves. When the partial waves enclose an area containing magnetic

flux φ, the relative phase between the two partial waves changes by (2eφ/h̄). Different

diffusion paths enclose different areas. The interference for paths enclosing different

areas can be either constructive or destructive in a magnetic field and the average

cancels. Increasing the strength of the magnetic field affects the coherence of paths

enclosing smaller areas.

A sufficiently strong magnetic field therefore restores the in-plane conductance

back to its classical value. In other words, the perpendicular magnetic field enhances

the in-plane conductance. However, weak localization by itself has no effect on the

tunneling conductance. Even from the simple description above, we notice that local-
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Figure 3-13: (a) Two particles undergoing diffusive motion. The trajectories intersect at points A
and B where the particles interact. The arrows indicate the direction of motion. (b) In the Cooper
interaction channel, the direction of one of the particles is reversed. The particles pass through
points A and B in different order.

ization does not affect the energy of the diffusive electrons. In attempting to explain

the enhancement in tunneling conductance by a magnetic field, it is necessary to

consider a combination of interaction and localization effects.

In the perturbation calculation by Altshular, Aronov and Lee [6] for an interacting

and disordered 2D system, the obvious way weak localization modifies the Coulomb

anomaly is by increasing the in-plane resistance. Application of a weak perpendicular

magnetic field removes this effect. This decreases the factor in front of the logarithmic

correction in Eq. 3.11 and reduces the tunneling suppression. In the semi-classical

calculation [23] that predicts power law IV, a lower in-plane resistance decreases the

exponent in the power law, leading to higher equilibrium tunneling conductance at

finite temperature.

3.6.4 Cooper channel interactions in a disordered 2DEG

A perpendicular magnetic field can also enhance the tunneling conductance by sup-

pressing the Cooper channel of electron-electron interaction and reducing the Coulomb

anomaly.

The Cooper channel refers to interaction between two electrons of similar energies

but a small net momentum [17, 30]. Figure 3-13 provides a qualitative picture of
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the Cooper channel interaction for a diffusive electronic system. In Fig. 3-13a, the

two electrons diffuse respectively from point C to point E, and from point D to F.

The trajectories cross at points A and B, where the electrons interact. Suppose

one electron transfers energy h̄ω to the other electron. If the time it takes for the

electrons to travel from point A to point B is short compared with ω−1, the phases of

the transition amplitudes at point A and B are close to each other and will interfere

constructively. This interference corresponds to the diffusion channel interaction and

gives rise to the correction in the DOS. We introduced this qualitative picture earlier,

in section 3.1.

For the Cooper channel interaction, one of the electrons travels in the reversed

direction from point F to point D, as shown in Fig. 3-13b. The electrons move in

opposite directions and have a small net momentum. Unlike the diffusion channel in

Fig. 3-13a, the electrons therefore go through points A and B in different order. It

would seem that since the electrons do not go through points A and B simultaneously,

no interference can occur between interactions at the two points. Nonetheless, if the

time to go from point A to point B is short compared to the inverse interaction

energy, the time at which each particle passes through points A and B cannot be

determined due to the uncertainty principle. In this case, there will be interference

of the interaction amplitudes, leading to the Cooper channel interaction.

Figure. 3-13a becomes Fig. 3-13b if one particle travels in reversed direction, i.e.

the time of one of the particles is reversed. The system must be invariant under

time reversal for Cooper channel interaction to be substantial. Since a perpendicular

magnetic field destroys time reversal symmetry, it also suppresses Cooper channel

interaction. A perpendicular magnetic field therefore reduces the corrections to the

DOS by destroying one of the interaction mechanisms, leading to an enhancement of

the tunneling conductance.

The existence of both weak localization and Cooper channel interaction are con-

tingent upon time-invariance. At present, we cannot determine which of the two

effects is responsible for the enhancement in tunneling conductance we observed.

It would be instructive to compare the magnitude of the magnetic field enhance-
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ment of tunneling conductance and in-plane conductance. Unfortunately, since there

are no ohmic contacts to the 2DEG in our samples as we mentioned in Chapter 2, we

cannot measure the in-plane conductance directly. From the prefactor of the loga-

rithmic voltage dependence of the tunneling conductance (Eq. 3.11) in zero magnetic

field, we deduce that the in-plane resistance ranges between 5 kΩ and 10 kΩ when

the magnetic field enhancement of tunneling takes place. Weak localization typically

increases the conductance by 2e2/h (equivalent to 13 kΩ). Such effect on the 2DEG

in our samples produces about 30% decrease in the in-plane resistance. In Figs. 3-10

and 3-11, application of a perpendicular magnetic field only enhances the tunneling

conductance by less than 10%. It would seem that the decrease of in-plane resistance

due to weak localization is more than sufficient to explain the tunneling enhancement

in a weak field. However, as we will discuss in Chapter 4, a strong magnetic field leads

to the formation of an energy gap for tunneling into the 2D system. As a result, a

perpendicular magnetic field produces two opposite and competing effects in the low

density regime. At low magnetic fields, the tunneling enhancement that we described

in this section dominates. As the magnetic field increases, the suppression effect of the

tunneling gap takes over, as shown in Figs. 3-10 and 3-11 for magnetic fields higher

than 1 T. Since the presence of the tunneling gap reduces significantly the tunneling

enhancement we observe, we cannot conclude that the reduction of in-plane resistance

by weak localization is adequate to explain the tunneling enhancement, even though

the tunneling current only rises by < 10% in Fig. 3-10.

It might be possible to distinguish whether the tunneling enhancement is due to

the Cooper channel interaction or a combination of weak localization and electron-

electron interactions by measuring the excitation dependence of the tunneling con-

ductance. Weak localization modifies the prefactor of the logarithmic correction in

Eq. 3.11. Application of a perpendicular magnetic field suppresses weak localization

and reduces the logarithmic corrections to the tunneling conductance at all excitations

by the same factor. On the other hand, corrections to the tunneling conductance due

to the Cooper channel interaction are expected to be restricted to small excitations

[11, 17]. Measurement of the excitation dependence of the tunneling conductance at
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various magnetic field strengths would certainly provide useful information in under-

standing the tunneling enhancement in weak magnetic fields.

3.7 Summary

In conclusion, we measure the Coulomb anomaly for tunneling into a disordered 2DEG

and observe the logarithmic voltage dependence of the tunneling conductance for the

first time in semiconductor 2D systems. The long scattering time for the 2DEG in

GaAs enables us to study the DOS corrections at energies higher than the inverse

scattering time in the quasi-ballistic limit. We demonstrate that the logarithmic

correction to the DOS persists beyond the diffusive limit.

We also study the deviations to the logarithmic DOS correction in the limit kF l '
1 and find that a power law provides a better fit to the tunneling conductance.

However, we do not have complete agreement with the semi-classical calculation that

predicts a power law I-V for tunneling. In contrary to the theory, the exponent of

the power law fit differs from the prefactor of the logarithmic fit at high voltages

when corrections are small. We suggest that this may arise from inhomogeneity of

the sample at low densities.

Furthermore, we find that a weak perpendicular magnetic field enhances the zero-

bias tunneling conductance in the density range where the logarithmic Coulomb

anomaly exists in zero magnetic field. At present, we cannot conclude whether a

combination of weak localization and electron-electron interactions or the suppres-

sion of Cooper channel interactions is responsible for the enhancement.
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Chapter 4

Linear Energy Gap for Tunneling

into the 2DEG in perpendicular

Magnetic Field

Characteristics of electrons tunneling into and out of a two dimensional (2D) system

differ considerably from those of the three dimensional (3D) case. The distinction

is especially pronounced when a magnetic field is applied in the tunneling direction

(perpendicular to the plane in the 2D case). In the simplest picture (Fig. 4-1), such a

magnetic field effectively localizes electrons in the 2D system. An electron tunneling

into an energetically unfavorable position cannot readily move away and instead tends

to move in circles. As a result, tunneling measurements of 2D systems in magnetic

field display effects attributable to a “pseudogap” in the single-particle DOS at low

injection energies [15, 19, 20, 21, 31, 32]. In contrast, for a 3D system the tunneling

electron can move parallel to the field lines to evade being localized at a position of

high potential energy and such a field-induced gap has not been detected.

This suppression of tunneling by a perpendicular magnetic field was first observed

by Ashoori et al. [19] in the temperature dependence of “zero-bias” tunneling between

a 2DEG and a 3D substrate. Eisenstein et al. [15] and Brown et al. [31] subsequently

measured the current-voltage characteristics for tunneling between two 2D electron

systems and find that the tunneling conductance is suppressed at small voltages.
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Figure 4-1: (a) Electrons in the 2D system arrange themselves in positions that minimize their
energy with respect to both the disordered background and their mutual repulsion. (b) An extra
electron injected into the system has a high Coulomb energy. Electrons can reduce this Coulomb
energy by moving away from one another, but the magnetic field instead forces them to move in
circles.
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In this Chapter, we perform a detailed survey of the excitation dependence of the

tunneling conductance into a 2DEG from a 3D electrode in a magnetic field and in

the presence of disorder using Time Domain Capacitance Spectroscopy (TDCS) that

we described in Chapter 2. In the low excitation regime, we find a behavior that is

not predicted by any of the prior theoretical models for this system [25, 33, 34, 35,

36, 37, 38]. We find that the single-particle DOS has a universal linear dependence on

energy near the Fermi energy for all field strengths and electron densities. Moreover,

the slopes of this linear gap are proportional to the inverse of the magnetic field

strength over a wide range of fields. We will describe a phenomenological model that

fits to the main features of the magnetic field induced gap.

4.1 Samples

TDCS measures the complete tunneling current-voltage characteristics without mak-

ing an ohmic contact to the 2DEG. We are able to measure for the first time the

contribution of localized states to the tunneling current.

Figure 4-2 shows the essential structure of samples used in TDCS measurement.

The samples are GaAs/AlGaAs heterostructures grown by molecular beam epitaxy.

In this chapter, we present data from two samples: sample A and sample m060296a.

The substrate is n+ doped GaAs for both samples. First, we grow a GaAs spacer

layer on top of the substrate. Then we grow an AlGaAs tunnel barrier, followed by

a GaAs quantum well, which defines the 2D system. The AlGaAs blocking barrier is

thick and prevents conduction between the 2D system and the GaAs top electrode.

We introduce dopants in the AlGaAs to provide electrons for the quantum well. The

AlGaAs regions in both samples have 30% aluminum concentration.

Sample A was grown by S. Wright and has been studied extensively using AC

capacitance techniques [7, 19, 20, 21]. The concentration of silicon dopants in the

degenerately n-doped substrate is 1 × 1017cm−3. The thickness of the layers, from

bottom to top, are as follows: 30 Å GaAs undoped spacer, 160 Å AlGaAs undoped

tunnel barrier, 150 Å GaAs undoped quantum well, 1550 Å AlGaAs blocking barrier
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Figure 4-2: The essential layer structure of the samples.
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and a degenerately n doped GaAs cap layer. In the AlGaAs blocking barrier, dopants

are introduced in the region from 100 Å to 200 Å away from its lower boundary to

provide electrons for the quantum well. A gold-germanium ohmic contact to the GaAs

cap layer allows variation of 2D electron density from depletion to 6×1011cm−2. The

circular mesa has a diameter of 400 µm.

Sample m060296A was grown by Prof. M. L. Melloch at Purdue University. The

substrate has silicon dopant concentration of 5 × 1017cm−3. The thickness of the

layers, from bottom to top, are as follows: 50 Å GaAs undoped spacer, 143 Å AlGaAs

undoped tunnel barrier, 150 Å GaAs undoped quantum well, 550 Å AlGaAs blocking

barrier and a 50 Å undoped GaAs cap layer. In the AlGaAs blocking barrier, dopants

at a concentration of 5× 1017cm−3 are introduced in the region from 200 Å to 350 Å

away from its lower boundary to provide electrons for the quantum well. A chromium

gold Schottky contact to the GaAs cap layer allows variation of 2D electron density

from depletion to 3× 1011cm−2. The circular mesa has a diameter of 300 µm.

Appendix C describes the fabrication process for the samples.

4.2 Linear Dependence of Tunneling conductance

on Voltage

Figure 4-3 shows the tunneling conductance (I/V) of sample A plotted against the

voltage across the barrier for magnetic field strengths of 0, 1, 2, 8 and 16 Tesla

at a fixed electron density of 1.9 × 1011cm−2. This density is high enough so that

the zero-bias tunneling anomaly described in Chapter 3 has receded at zero field.

Application of a magnetic field reduces the tunneling conductance around zero bias.

The suppression becomes deeper and wider as the field is increased. This field-induced

tunneling suppression differs qualitatively from the logarithmic suppression described

in Chapter 3 in the low density regime at zero field. Near zero bias, we find that

the conductance has a universal linear dependence on the excitation voltage for all

field strengths and electron densities. Moreover, an increase in the strength of the
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Figure 4-3: Dependence of the tunneling conductance of sample A on the excitation voltage
across the tunnel barrier for different magnetic field strengths at 30 mK and a fixed density of
1.9× 1011cm−2.
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Figure 4-4: Dependence of the tunneling conductance of sample A on the excitation voltage
across the tunnel barrier for different magnetic field strengths at 30 mK and a fixed density of
1.9× 1011cm−2.

suppression is accompanied by a change in the curvature of the high excitation part

of the conductance curves when the magnetic field is increased, as shown by Fig. 4-4.

Even though the conductance curves at high excitation appear rounded at high

fields, the zero bias region remarkably remains linear in voltage, with both the mag-

nitude and the slope significantly reduced. This singular behavior is illustrated by

Fig. 4-5, which zooms in near the zero bias region of the conductance curves for dif-

ferent field strengths. Such a linear energy dependence of the single particle DOS

is observed over the full range of densities in both sample A and sample m060296A

except near depletion (N ≤ 5× 1010cm−2).

To our knowledge, no existing model other than the 2D Coulomb gap [5, 25], which

we will describe in section 4.4, predicts such a universal linear DOS at low energies for

such a wide range of field strengths and densities as observed in our samples. However,

contrary to expectations for a simple Coulomb gap the slopes of the observed linear

gap are strongly field dependent. Figure 4-6 shows the slopes of the linear regions

of the conductance curves plotted against inverse magnetic field strength. For filling

factors ν < 1, the data points fall onto a straight line extrapolating to a negative
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Figure 4-5: Tunneling conductance as a function of excitation voltage for 6 different magnetic field
strengths. Different ranges are chosen to display the singular behavior near zero bias.

intercept on the vertical axis. For low fields, there are deviations from the straight

line as ν varies between integer and non-integer values.

For different 2D electron densities, the conductance curves remain linear near zero

bias. As a function of density, the slopes of the linear pseudogap exhibit minima at

integer ν. For instance, at 8 Tesla the magnitude of the slope drops by a factor

of 2 at ν = 2 compared to ν = 1.5. In Fig. 4-6, data points corresponding to

integer ν are marked. These minima in the slope of the linear gap at integer ν might

be attributed to a smaller background DOS between two Landau levels. Other than

particulars associated with integer ν, our data display only a very weak overall density

dependence. The dominant factor in determining the slope of the linear gap is the

magnetic field strength.

For completeness, we also show data for a different sample. Figure 4-7 plots the

tunneling conductance curves of sample m060296a grown in a different MBE machine.

We observe the same linear voltage dependence of the tunneling conductance in this

sample. Furthermore, the slope of the linear gap decreases with increasing magnetic
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field in the same fashion as in the sample A as illustrated by Fig. 4-8. In Chapter 5,

we will describe samples with much higher mobility. The tunneling conductance of

these samples displays the same linear voltage dependence around zero bias at low

magnetic fields (Fig. 5-3). However, the slopes of the V-shaped pseudogap decrease

more rapidly with increasing magnetic field.

4.3 Comparison of TDCS data to tunneling data

from double quantum wells

There have been two other experiments [15, 31] that investigated the effect of this

magnetic field induced energy gap on tunneling I-V characteristics. The samples in

these experiments consist of two 2DEG’s with independent ohmic contacts. Both

experiments focus on the dependence of the width of the tunneling gap on magnetic

field and density. There have not been any reports of linear voltage dependence of

the tunneling conductance at small voltages. In this section, we explain why previous

experiments did not detect the singular behaviour of the gap near zero bias observed

in our measurement.

In order to compare our data to results from previous double well experiments,

we compute the I-V curves expected for tunneling between two 2D electron systems:

I ∝
∫ eV

0
n(E − eV )n(E)dE (4.1)

Here both 2D systems are assumed to have identical tunneling density of states n(E)

deduced from our 2D-3D tunneling data from sample A at 16 Tesla in Fig. 4-3.

Equation 4.1 resembles a convolution integral (except the upper limit of integration

is eV instead of infinity). One can refer to Section 1.4 for a detailed discussion and

derivation of Eq. 4.1. The basic idea is that tunneling can only take place when there

is a filled state in one 2DEG and an empty state at the same energy in the other

2DEG.

The resulting I-V curve, as shown in Fig. 4-9, qualitatively resembles that from
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Figure 4-9: Simulated I-V curve for tunneling between two 2DEG’s, assuming the tunneling DOS
of each 2DEG develops the pseudo-gap deduced from our 16 T conductance curves in Fig. 4-3.

double well experiments [15, 31] with no singularities at zero bias. In our opinion,

previous tunneling experiments did not resolve the linear tunneling gap as we did due

to the convolution effects (Eq. 4.1) on the DOS in double-well systems.

4.4 Linear Coulomb gap with universal slope in

2D

In this section we describe the Coulomb gap [5] in the single-particle DOS of a system

of classical point charges. The Coulomb gap has a linear energy dependence for 2D

systems. It provides a good starting point in understanding our data.

Consider a 2D system of electrons in a disordered background potential. We as-

sume that the electron concentration is so low that the average spatial separation

is larger than the size of the wavefunction. Hence there is no overlapping of wave-

functions and we can treat the electrons as classical point charges occupying sites

randomly distributed in space. The existence of a random background potential

leads to a distribution in the energies of the sites as shown in Fig. 4-10a.
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Figure 4-10: (a) Energy diagram for system of classical point charges in the ground state. Levels
below the chemical potential µ are occupied. (b) If we transfer a particle from site i to site j the
energy of the system increases.
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In a tunneling event, we add an extra electron or remove one electron from the

system. Suppose the energy of the system increases by Ej when we put an extra

electron on to site j. If instead we take an electron away from site i the energy of

the system decreases by Ei. To clarify the meaning of Ei and Ej, assume we put an

electron reservoir close to this system. If the chemical potential in the reservoir is

higher than Ej, an electron tunnels into the system onto site j. On the other hand,

if the chemical potential in the reservoir is lower than Ei, an electron leave site i and

tunnel into the reservoir.

In the next step, we will demonstrate that that there is a very low probability of

finding a site with energy Ei if Ei is very close to the chemical potential. At energies

further away from the chemical potential, the chances of finding a tunneling site

increases. Let us imagine removing the tunneling reservoir and consider the system

by itself. Suppose in the ground state, site i is occupied while site j is empty, as

shown in Fig. 4-10a. In Fig. 4-10b we transfer an electron from site i to site j and the

energy of the system changes. We can calculate this energy change in two steps. First

we take the electron from site i to infinity. By definition the energy of the system

changes by Ei. The system now has N-1 electrons. In the second step we put this

electron from infinity back onto site j. This would have added energy Ej back to

the system if site i were already occupied. Recall that Ej is defined as the energy

added to the original N particle system if we put an electron onto site j. However,

the system now has one electron missing from site i. As a result, we need to correct

Ej by an amount e2/κrij, where κ is the dielectric constant and rij is the distance

between the sites i and j.

Therefore, the energy change ∆E of moving an electron from site i to site j is:

∆E = δE(take i away) + δE(put on j) (4.2)

= −Ei + (Ej − e2

κrij

) > 0 (4.3)

Since by definition our system was originally in the ground state before we perform

this shuffling of particles, the energy change ∆E must be positive. Simple rearrange-
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ment of terms leads to the following restriction on the distance between sites i and j

of given energies:

rij >
e2

ε(Ej − Ei)
(4.4)

The physical meaning of Eq. 4.4 is that if there are two sites very close in energy

near the chemical potential, they have to be very far apart spatially so that their

Coulomb repulsion is small. This imposes a limit on the number of states available

for tunneling of electrons near the chemical potential. In two dimensions, the total

number per unit area N of available tunneling states within an energy of E about

the chemical potential is [5]:

N(E) =
1

r2
ij

=
κ2E2

e4
(4.5)

The derivative of the total number of states N with respect to energy gives the density

of states n(E):

n(E) =
dN

dE
=

2κ2E

e4
∝ E (4.6)

Therefore the Coulomb gap depends linearly on energy, with a slope determined

solely by physical constants. In contrast the slope of the linear gap in our data

depends inversely on field strength with an offset, suggesting that a simple Coulomb

gap is inadequate in explaining the tunneling suppression in our experiment.

In tunneling experiments, there must be a nearby electrode to supply the tun-

neling electrons. This electrode screens the interactions in the 2DEG, rendering the

interaction among the electrons dipolar. Pikus and Efros [25] showed that even for

dipolar interactions, the gap in the single-particle DOS would survive for a classical

disordered system of particles. However there are no predictions that the gap re-

mains linear at low energies with its slope inversely proportional to magnetic field, as

observed in our experiment. In order to explain our data, we approach the tunnel-

ing problem from a different viewpoint in which we directly incorporate the effect of

screening instead of treating it as a perturbation. This model will be the subject of

the next section.
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Figure 4-11: Energy diagram of the charge transfer process from the 3D electrode to a single
puddle. (1) Zero applied voltage. Fermi energies of the 3D electrode and the puddle equilibrates to
within e2/C. Vd is the accidental separation of the two Fermi energies due to disordered background
potential. (2) Application of a voltage step V rises the Fermi level of the puddle above the Coulomb
threshold. (3) Electron tunnels to the 3D electrode and electrostatic potential of the puddle drops
by e/C.

4.5 Coulomb Blockade Gap

While no existing theory explains our results, the main features of our data are

consistent with predictions from a simple phenomenological model. This model is

inspired by one previously developed for tunneling into a system of random sized

metal particles [39]. In this picture, we model the 2D system as isolated puddles with

uniform charging energies and random background offsets. Interactions among the

puddles are neglected, in contrast to the Coulomb gap model. This assumption may

be justified due to the presence of the nearby 3D conducting substrate which screens

the interactions among the puddles.

Even with no applied voltage, the Fermi level of each puddle will not, in general,

align with the Fermi level of the 3D bottom electrode. The energy of a puddle

with capacitance C increases or decreases by e2/C when an electron is added to or

removed from the puddle. Thus the Fermi energies on the two sides of the tunnel
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Figure 4-12: (a) From the top: I-V curve and the corresponding conductance curve of a single
puddle. A random background voltage shifts the conductance curves along the voltage axis. The
bottom figure shows the V-shape conductance curve resulting from summations of these randomly
shifted conductance curves. (b) Puddles of different sizes produce conductance curves with different
slopes, giving rise to an overall conductance curve shown at the bottom. (c) When the puddles
becomes so small such that e/C becomes larger than the background offset voltage, the overall
conductance will vanish near zero bias. (d) In this regime, when we take puddles of different sizes
into account, the resultant conductance curve is U-shaped.
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barrier are only equilibrated to within e2/C of each other. The Fermi energies in

these puddles are assumed to be uniformly distributed within this range due to, for

instance, a random background voltage offset created by nearby dopants or impurities.

Each puddle contributes a Coulomb blockade type I-V characteristic, leading to a

conductance curve which is constant in voltage except for a region of width e/2C

randomly displaced from zero bias where the conductance vanishes (Fig. 4-12a).

To obtain the tunneling conductance into the whole system, we simply add the

tunneling conductance of all puddles. As shown in Fig. 4-12b, summation of conduc-

tance curves from puddles with different voltage offsets generates a resultant conduc-

tance curve that is linear in voltage near zero bias. The slope of this linear gap is

proportional to the capacitance C, while the width of the gap is inversely proportional

to C. Since the capacitance C is proportional to the size of the puddles, our data

can be explained if the average area of a puddle varies inversely with magnetic field

strength. This model assumes that the high voltage conductance of an individual

puddle is proportional to its area and the total area occupied by puddles is constant.

Another appealing feature of this “Coulomb blockade gap” model is that it can

explain the different curvatures of the tunneling spectrum at high excitations and the

negative offset of the slope vs. inverse field strength dependence shown in Fig. 4-

6. When we take puddles of different sizes into account, the resultant DOS will be

a superposition of linear gaps with different widths, preserving the linear behavior

at zero bias but allowing for curvature at high excitations. In the limit when the

range of random energy offsets is larger than the Coulomb blockade energy, puddles

of various sizes all produce V-shaped conductance curves, albeit with different widths

and slopes. Figure 4-12b shows that superposition of contributions from puddles of

different sizes results in a conductance curve that is convex (negative curvature) in

high excitation voltages while the V-shaped (linear) singular behavior is maintained

near zero bias, as identified with our low field data.

When some of the puddles are so small that their Coulomb blockade energies

exceed the range of the background offset energy, their conductance curve will no

longer be V-shaped. In this regime, conductance contributions from puddles of a
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particular size will have zero conductance at low bias up to a certain voltage beyond

which the overall conductance rises linearly with voltage to the unsuppressed value,

as depicted in Fig. 4-12c. Summing contributions for puddles of various sizes leads

to the U-shape conductance curve in Fig. 4-12d, concave with respect to voltage

at high biases. As long as there exist some puddles large enough with a V-shape

conductance curve, the linear behavior of the overall conductance is preserved near

zero bias, although with a much reduced slope.

We can carry this argument further to explain the finite magnetic field required to

produce a zero slope in the DOS as extrapolated from our TDCS data. This happens

when the puddles are small enough so that the Coulomb blockade energy of every

puddle in the system exceeds the range of the background offset energies. It is not

necessary to have an infinitely small puddle to achieve a zero slope for conductance

near zero bias. This explains the non-zero intercepts on the horizontal axes if one

extrapolates the data points in Figs. 4-6 and 4-8.

The above deductions are based on the assumption that larger puddles break

up into smaller ones and that the mean area of the puddles shrinks linearly with

increasing field strength. Electrons therefore charge parallel plate capacitors whose

lateral dimension is proportional to the magnetic length. From the width of the gap

in our data, we estimate that this proportionality constant is about 5. We do not yet

have a clear answer to the question of what the puddles are and why they shrink as

the magnetic field strength is increased.

While this simple picture of a Coulomb blockade gap may not provide a complete

description of the system, it seems to be able to explain qualitatively most features in

our data. A more thorough understanding of the tunneling suppression will require

inclusion of interaction, charging effects and the quantum mechanical properties of

the 2D electron system.
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4.6 Conclusion

In this chapter, we studied the suppression of tunneling conductance by a magnetic

field applied perpendicular to the 2D plane. We find that the tunneling conductance

depends linearly on excitation voltage near zero bias for all electron densities and field

strengths. The slope of this linear gap decreases as the magnetic field is increased. We

proposed an interpretation of this behavior using a “Coulomb blockade gap” model

which seems to capture most features in our data.
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Chapter 5

Tunneling into Ferromagnetic

Quantum Hall States: Observation

of a Spin Bottleneck

The interplay between Zeeman coupling of electronic spins to an applied magnetic

field and Coulomb interactions among electrons leads to remarkable spin configura-

tions of quantum Hall systems. For instance, around quantum Hall filling factor ν

= 1, powerful exchange interactions align electron spins to form a nearly perfect fer-

romagnet [2]. Theorists predict that the elementary charge excitations of this ν =

1 quantum Hall state consist of spin textures known as Skyrmions [3, 4]. The small

value of the Zeeman energy compared to the Coulomb energy in GaAs gives rise to

the appropriate conditions for the formation of Skyrmions.

In Chapters 3 and 4, we demonstrated the capability of tunneling experiments to

probe electron-electron interactions. Given the measured and predicted richness of

the spin properties of quantum Hall systems, we decided to explore whether tunneling

could also prove useful for revealing effects of electronic spins [40]. Such study should

be most interesting for the ferromagnetic quantum Hall states, but experimental data

for tunneling in these regimes have been limited. The major obstacle is that the in-

plane conductance of the 2D system drops to near zero around ν = 1. As a result the

tunneling charge cannot be collected and measured via conduction in the 2D plane, as
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we discussed in Chapter 2. It is possible to use capacitance techniques to circumvent

this problem [19, 20, 32]. However, complete characterization involves time-resolved

measurements described here or measurements over broad frequency range that have

not been previously performed on high mobility samples.

In this Chapter, we describe measurements of tunneling from a 3D electrode into

a high mobility 2D electron system in a GaAs/AlGaAs heterostructure at ν = 1. Us-

ing time domain capacitance spectroscopy (TDCS) that we described in Chapter 2,

we detect the tunneling current into both localized and delocalized states. Here, we

focus on the effects of electronic spins on tunneling by detecting the equilibrium tun-

neling of electrons in real time, instead of studying the tunneling pseudogap through

measurement of non-linear I-V curves, as we discussed in Chapters 3 and 4. While

it is well-known that Coulomb interaction of electrons suppresses tunneling near the

Fermi energy, we have discovered that non-equilibrium spin accumulation also leads

to a reduction of tunneling rates into spin-polarized quantum Hall states. We observe

that the process of electron tunneling into ferromagnetic quantum Hall states differs

qualitatively from tunneling into other filling fractions: electrons tunnel into ferro-

magnetic quantum Hall states at two distinct rates. Some electrons tunnel into the

2D system at a fast rate while the rest tunnel at a rate up to 2 orders of magnitude

slower. We observe such novel double-rate tunneling only in spin-polarized quantum

Hall states (ν = 1, 3 and ≤1/3) in samples of highest mobility. This effect does not

appear at even-integer filling fractions. Our detailed study of the dependence of the

two rates on temperature, magnetic field and tunnel barrier thickness indicates that

slow in-plane spin relaxation leads to a bottleneck for tunneling and gives rise to the

double tunneling rate phenomenon. To our knowledge, our work is the first experi-

ment to demonstrate the effects of interactions among electronic spins on tunneling

into quantum Hall systems.

We begin this chapter by giving an introduction to the ferromagnetic quantum

Hall state at ν = 1 and its elementary charge excitations.
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5.1 Spin Physics for the ν = 1 Ferromagnetic State

For electrons in free space, the cyclotron energy (h̄ωc) and the Zeeman energy (−gµBB)

have the same magnitude in an applied magnetic field B, where ωc = eB/mec is the

cyclotron frequency, µB = eh̄/2mec is the Bohr magneton, me is the rest mass of

the electron and the g-factor has a value of 2. In GaAs, the Zeeman energy is much

smaller than the cyclotron energy for two reasons. First, the effective mass for elec-

trons in GaAs is about 15 times smaller the bare electron mass, hence increasing the

cyclotron energy by the same factor. At the same time, spin-orbit interactions in

GaAs modify the g-factor to a value of −0.44, further diminishing the Zeeman energy

compared to the cyclotron energy. As a result of these two effects, the Zeeman energy

in GaAs is 70 times smaller than the cyclotron energy.

As we described in Chapter 1, the density of states of a 2DEG in a perpendicular

magnetic field consists of highly degenerate Landau levels separated by energy gaps.

At filling factor ν = 1, only the lowest spin-split Landau level is filled with electrons.

Even for non-interacting electrons, one would expect a disorder-free 2D system to be

spin-polarized. However, this reasoning is actually misleading because the ν = 1 state

is a highly correlated state, and the dominant energy at ν = 1 is not the Zeeman

energy but the Coulomb energy among electrons. It is the Coulomb exchange energy

that is responsible for aligning the spins. For instance, in GaAs the Coulomb energy

e2/κlB (where κ is the dielectric constant and lB is the magnetic length) at a magnetic

field of 5T is ∼80 times larger than the Zeeman energy. At ν = 1, electrons gain

exchange energy by aligning their spins and the 2D system develops spontaneous

ferromagnetic order. Interaction effects among electrons significantly enhance the

energy gap at ν = 1 from the single-particle Zeeman energy. In fact, there have been

theoretical predictions that the ν = 1 quantum Hall state will survive even in the

absence of the Zeeman interaction [3]. Experiments have verified this by tuning the

g-factor of GaAs to zero through application of hydrostatic pressure to the sample

[41, 42, 43].

Recently there have been substantial interest in the elementary excitations of
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Figure 5-1: (a) An ordinary charge excitation for a filled spin-split Landau level consists of a single
flipped minority spin. (b) When the Zeeman energy is small compared to the Coulomb exchange
energy, the lowest energy charge excitation contains spin texture known as Skyrmions. Skyrmions
consist of a radial spin distribution that is reversed at the center and gradually heals to the spin
background. This saves on exchange energy because neighboring spins are almost aligned.

this ν = 1 ferromagnetic state. Theorists [3, 4] predict that the lowest energy charge

excitations at ν = 1 consist of spin textures known as Skyrmions. It is again the small

value of the Zeeman energy compared to Coulomb energy in GaAs that gives rise to

the appropriate conditions for the formation of Skyrmions. We give a qualitative

picture of Skyrmions for the ν = 1 ferromagnetic quantum Hall state below.

At ν = 1, the lowest Landau level is occupied by electrons with a single spin

orientation. A naive way to create a charge excitation is to introduce a minority up-

spin (Fig. 5-1a). This costs a considerable amount exchange energy because the spin

of the extra electron is opposite to its neighbors. The system can save more energy

by creating excitations that contain spin texture. In Fig. 5-1b the spin of electrons

gradually changes from up in the middle to down at the periphery. By doing this,

the system obviously has to pay extra Zeeman energy because more than one spin

is flipped but since adjacent spins are almost aligned, this saves on the exchange

energy. It is the competition between Zeeman and Coulomb energy that determines

how many spins are flipped and the size of a Skyrmion excitation. In a system with
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zero Zeeman energy, Skyrmions will be infinite in size. For finite Zeeman energy,

Skyrmions have a certain size that is characterized by the number of reversed spins.

So far experimental results supporting the Skyrmion picture at ν = 1 comes

from three types of measurements. The earliest evidence involves measurement of

the spin polarization of the 2DEG around ν = 1. Nuclear spin resonance [44] and

magneto-optical absorption experiments [45] have shown that the spin polarization

of 2D electrons attains a maximum at ν = 1 and falls off sharply on either side. Such

observation is consistent with the notion that Skyrmions contain multiple flipped spins

as described above. This rapid loss of spin polarization away from ν = 1 provides the

strongest evidence for the existence of Skyrmions.

Another type of experiment utilizes thermally activated transport to measure the

energy gap for creating quasiparticles at ν = 1. The objective of these experiments is

to deduce the number of flipped spins that a quasiparticle carries by varying the Zee-

man energy while keeping the exchange energy constant. Schmeller et al. [46] adjust

the Zeeman energy through changing the component of magnetic field parallel to the

2D plane. The component of magnetic field perpendicular to the 2D plane is kept

constant to maintain the exchange energy at fixed value. In a different experiment,

Maude et al. [41] vary the Zeeman energy by tuning the g-factor through applica-

tion of hydrostatic pressure to the sample. The third kind of experiment providing

support for the Skyrmion picture involves heat capacity experiments [47, 48] which

produced results consistent with the notion that Skyrmions crystallize into a regular

lattice at filling factors slightly away from ν = 1.

In this Chapter, we describe evidence of Skyrmion effects on tunneling into the ν =

1 quantum Hall state. Tunneling experiments offer another approach for studying the

effects of Skyrmions, independent of the various measurement techniques described

above. We will demonstrate the capability of tunneling measurements in revealing

the interactions among electron spins.
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5.2 Samples

In this chapter, we will describe data from very high mobility samples grown by L. N.

Pffeifer and K. W. West at Bell Laboratory. One of the reasons for the improvement

in mobility compared to samples we measured in Chapters 3 and 4 is the modification

in sample design described below.

Most GaAs heterostructures used to study the quantum Hall effect are modulation

doped. In these samples there are dopants in the AlGaAs regions to provide electrons

for the quantum well. Since the dopants are physically separated from the 2D elec-

trons, modulation doping improves the sample mobility considerably. The fractional

quantum Hall effect was first observed by Tsui, Stormer and Gossard [49] on such

samples. These remote dopants nevertheless remain the major source of disorder.

In our new design, we eliminate this modulation doping. We can remove the

dopants in AlGaAs without suffering from dramatic reduction of 2D electron density

because electrons in the quantum well can be provided by the bottom 3D electrode

when we apply a positive voltage on the top gate to attract electrons into the quan-

tum well. Dopants still exist in our structure in the top and bottom n-doped GaAs

electrodes. However, these dopants are surrounded by conduction electrons and are

very effectively screened. Since we do not have ohmic contacts to our 2DEG, we

cannot measure its mobility directly. Nevertheless, regular modulation doped sam-

ples by grown by Pffeifer and West consistently achieve mobilities of larger than

106cm2V −1s−1. We expect our samples to have even higher mobility due to the com-

plete absence of unscreened silicon dopants in AlGaAs.

In this chapter, we will present data from four such samples with very high mobil-

ity. Apart from differences in tunnel barrier composition and thickness, the samples

have essentially the same structure shown in Fig. 5-2a. The following sequence of

layers is grown on n+ GaAs substrate: 6000 Å n+ GaAs, 300 Å GaAs spacer layer,

AlGaAs/GaAs tunnel barrier, 175 Å GaAs quantum well, 700 Å AlGaAs (undoped)

blocking barrier and 1.3 µm n+ GaAs cap layer. Samples p040297 and p092696 have

AlGaAs/GaAs superlattice tunnel barriers of thickness 193 Å and 147 Å respectively.
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Figure 5-2: (a) The essential layer structure of the high mobility samples. (b) External circuit
used to measure Rtunnel. The sample can be modeled by linear circuit elements (inside the dotted
box) when the excitation voltage is smaller than kT.
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For samples p031798 and p061998a, the tunnel barriers are made of 147 Å and 130

Å AlGaAs respectively. We performed our measurements on circular mesas with

diameters of 300 µm for all four samples.

Appendix C describes the fabrication process for the samples.

5.3 Equilibrium Tunneling at ν = 1

In Chapter 2 we described measurements of the single-particle density of states using

“time domain capacitance spectroscopy” (TDCS). We use the same technique to

study the high mobility samples. Figure 5-3 illustrates that in a magnetic field the

tunneling conductance depends linearly on excitation voltage, similar to the behavior

of the more disordered samples in Chapter 4. In this Chapter, we focus on“zero-bias”

tunneling into the 2DEG measured by applying excitation voltages smaller than kT .

The lowest temperature at which we took our data is about 60 mK. This corresponds

to an excitation voltage of approximately 7µV , which is a factor of 1000 smaller

compared to the voltage axis in Fig 5-3. We therefore perform the measurement

essentially at the bottom point of the linear energy gap. By keeping the chemical

potential on the two sides of the tunnel barrier within kT of each other, we are not

affected by non-linear or non-ohmic behavior of the I-V curves.

In this equilibrium tunneling regime [19, 20], we model the tunnel barrier by a

capacitor Ctunnel shunted by a resistor Rtunnel, while a capacitor Cblock represents the

blocking barrier (Fig. 5-2b). Figure 5-2b also shows the capacitance bridge used to

measure Rtunnel. Voltage steps of opposite polarity are applied to the top electrode

of the sample and to one plate of a standard capacitor CS. The other plate of CS

and the bottom electrode of the sample are electrically connected, and the voltage

Vb at this balance point is amplified and recorded as a function of time. When the

excitation voltage amplitude is smaller than kT, the tunneling resistance Rtunnel is

independent of excitation voltage across the tunnel barrier. The equivalent circuit

of the bridge consists of linear circuit elements and therefore we expect Vb to decay

exponentially.
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Figure 5-3: Linear dependence of the tunneling conductance on excitation voltage in a magnetic
field of 1.5T for sample p031798. The filling factor is about 0.87.
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Figure 5-4: (a) Recorded signal decays exponentially at ν = 1.5. (b) Same signal on a semilog
scale. The line is an exponential fit to the data. (c) Recorded signal is non-exponential at ν = 1.
(d) Signal at ν = 1 on a semilog scale. The thin line is an exponential fit to the slow decaying part
of the time trace. The thick line is a fit to the data using Eq. 5.1.
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Figures 5-4a and b plot the recorded voltage on linear and logarithmic vertical

scales as a function of time at ν = 1.5 and a field of 3.8 T. The signal decays expo-

nentially for more than 2 orders of magnitude. In general, we observe such agreement

with an exponential decay when ν is close to half integer. This indicates that for

filling factors at which the 2DEG is compressible, electrons tunnel into the 2DEG at

a single rate and the equivalent circuit model in Fig. 5-2 adequately describes the

sample. Figures 5-4c and d show a drastically different recorded signal at ν = 1. The

decay is clearly non-exponential. We can fit it well with a sum of two exponential

decays with different time constants (τ1, τ2) and prefactors (A1, A2):

V (t) = A1exp(−t/τ1) + A2exp(−t/τ2) (5.1)

as shown in Figs. 5-4c and d. In other words, at ν = 1 electrons tunnel from the 3D

electrode into the 2DEG at two distinct rates. Some electrons tunnel at a fast rate

while the rest tunnel at a significantly slower rate.

We emphasize that the measurement is performed by applying excitation voltage

across the tunnel barrier (8.9 µV) comparable to the temperature (65 mK) and is

therefore in the linear response limit of Rtunnel. This eliminates the possibility that the

non-exponential relaxation at ν = 1 is due to an excitation voltage-dependent Rtunnel

caused by the magnetic field induced energy gap in tunneling [15, 19, 20, 21, 32]

described in Chapter 4. To further verify that tunneling occurs in the linear response

limit, we reduce the amplitude of the excitation voltage by 50%. The corresponding

signal, apart from a reduction in magnitude by a factor of two, is identical to the

original signal that is made up of a sum of two exponential decays with distinct time

constants.

Figure 5-5 shows the dependence of relaxation rates on gate voltage for sample

p061998a at a fixed magnetic field of 3.8 T. We change the filling factor by increasing

the gate voltage to attract electrons from the 3D substrate into the quantum well. At

each gate voltage in Fig. 5-5, we record a time trace similar to the ones in Fig. 5-4.

For gate voltages at which we can fit the time trace by a single exponential decay as in
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Figure 5-5: Dependence of the relaxation rate of the exponential decay on sample bias for sample
p061998a at 3.8 T and 65 mK.
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Figs. 5-4a and b, we plot the relaxation rate as a hollow square. When it is necessary

to use a sum of two exponential decays (Eq. 5.1) to fit the signal as in Fig. 5-4c and d,

filled triangles and circles represent the corresponding fast and slow relaxation rates

(1/τ1 and 1/τ2) obtained respectively. Figure 5-5 indicates that tunneling occurs at

two distinct rates near integer Landau level filling factors, while electrons tunnel at

a single rate when the 2DEG is compressible near half integer fillings.

5.4 Sample Inhomogeneity: Comparison between

Tunneling at ν = 1 and ν = 2

At integer filling factors, the in-plane conductance vanishes as the electronic states at

the chemical potential become localized. Inhomogeneity, such as monolayer fluctua-

tions in the tunnel barrier thickness, gives rise to non-uniform tunneling rates into

different lateral positions of the 2D plane. In Fig. 5-5, the two relaxation rates at

ν = 2 differ approximately by a factor of three and can be explained well by this

argument. In contrast, the fast and slow relaxation rates at ν = 1 differ by about a

factor of 60. Relaxation rate differences of such magnitude cannot be explained by

fluctuations in the tunnel barrier thickness. Moreover, it is unlikely that the 2DEG

is more inhomogeneous at ν = 1 than at ν = 2. The ratio between the two relaxation

rates also behaves differently around ν =1 and ν = 2 as ν deviates from exact integer

value. In Fig. 5-5, the ratio of the two rates remains almost constant around ν = 2.

On the other hand, this ratio increases as ν approaches 1, attaining a peak value of

60 at ν = 1.

Figure 5-6 illustrates the difference between a time trace at ν = 1 and ν = 2. Both

traces decay at a comparable rate initially (with time constants ∼ 10 µSec), whereas

only the ν = 1 signal contains an additional slower decaying component with a time

constant of about 600 µSec.

We note that the applied magnetic field suppresses the relaxation rates in Fig. 5-

5 by as much as 4 orders of magnitude. With the magnetic field turned off, the

111



0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5
R

ec
or

de
d 

si
gn

al
(m

V
)

Time(mS)

 B = 3.8T

 T = 65mKν  = 1
(a)

0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

Time(mS)

R
ec

or
de

d 
si

gn
al

(m
V

)  B = 3.8T

ν  = 2  T = 65mK

(b)

Figure 5-6: (a) Recorded signal at ν = 1 contains a slow decay with time constant ∼ 600µs in
addition to initial fast decay with time constant ∼ 10µs. (b) Recorded signal at ν = 2 does not have
the slow decay component.
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tunneling rate into the 2DEG in this sample is too fast for our range of detection. It

is also noteworthy that the tunneling suppression increases in strength toward ν = 1

while it is weakest for the localized states at ν = 2. In this chapter, we focus on

the double relaxation rate phenomenon at ν = 1, which, unlike at ν = 2, cannot be

trivially explained by inhomogeneity of the sample.

5.5 Tunneling of Spin-up and Spin-down Electrons

The ν = 1 and ν = 2 quantum Hall states have the common characteristic that an

energy gap exists at the chemical potential, albeit of different origins. At ν = 2, the

cyclotron gap arises from the effect of the magnetic field on the orbital motion of

the electrons and is present even for a non-interacting 2D electron system. On the

other hand, the existence of an energy gap at ν = 1 is a many body phenomenon.

The interactions among electrons lead to ferromagnetic order and the formation of

an exchange energy gap. In our experiment, we measure equilibrium tunneling by

applying excitation voltages at least 100 times smaller than the Coulomb energy. In

an ideal 2D system without disorder at ν = 1, there are no states at the chemical

potential into which electrons can tunnel. Any tunneling current detected must arise

from broadening of the Landau levels due to disorder.

Consider a 2D system with inhomogeneous density. When the bulk filling factor

is one, regions with local density higher (lower) than the bulk density have filling

fraction ν > 1 (ν < 1) into which electrons with minority (majority) spin tunnel, as

shown in the middle picture in Fig. 5-7a. To our knowledge, theories do not presently

predict that the tunneling rates of electrons with spin up and down are significantly

different. While a difference in the tunneling rates for electrons with opposite spins

can lead to observation of two relaxation rates in our experiment, we show below that

this hypothesis is inadequate to explain our data.

Figure 5-8a plots the relaxation rate as a function of gate voltage at 5.7 T. Anal-

ogous to the data at a lower field in Fig. 5-5, tunneling occurs at two distinct rates

around ν = 1. In addition to the relaxation rates, we also show the prefactors of
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Figure 5-7: This figure illustrates the effect of density inhomogeneity on tunneling at ν = 1.
(a) The three diagrams represent the same 2D system with inhomogeneous density at increasing
bulk filling factors from bottom to top. Up-spin electrons tunnel into regions with local ν > 1
(shaded by vertical stripes) while down-spin electrons tunnel into regions with local ν < 1 (shaded
by horizontal stripes). (b) Expected capacitance contribution for up-spin and down-spin electrons
if they tunnel into the 2D system at different rates. (c) Our observed capacitance contribution for
the two tunneling rates (also shown in Fig. 5-8b) is inconsistent with this picture.
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the exponential fits (A1 and A2 in Eq. 5.1 scaled by a constant factor) in Fig. 5-8b.

Around ν = 1, A1 and A2 are proportional to the amount of charge tunneling at the

fast and slow rates respectively. For the slow decay, the prefactor (plotted as circles)

has a minimum at ν = 1 while the prefactor for the fast decay (plotted as triangles)

instead has a maximum. Consider a 2D system with inhomogeneous density at bulk

filling factor ν = 1. As the bulk density is increased, the fraction of regions with local

filling factor ν < 1 decreases monotonically and vice versa for regions with local ν > 1

(Fig. 5-7a). If electrons with majority and minority spins tunnel at different rates,

we expect the prefactors of the fast (slow) decay to be an increasing (decreasing)

function of bulk density around ν = 1 (Fig. 5-7b), in contrary to Fig. 5-8b. Therefore

the observation of two relaxation rates at ν = 1 cannot be trivially explained by a

difference in the tunneling rates for electrons with majority and minority spins.

5.6 Energy Scale of the Double-rate Phenomenon

Figure 5-9 shows the temperature dependence of the two relaxation rates at ν =

1 for three magnetic field strengths. At each magnetic field, we adjust the density

to maintain the filling factor at ν = 1. Both the slow and fast rates have rather

weak temperature dependence at low temperature for all three magnetic fields. The

weak temperature dependence of the slow relaxation rate persists up to a temperature

beyond which the slow relaxation rate speeds up significantly and the double tunneling

rate phenomenon recedes. In other words, electrons tunnel at two distinct rates at ν

= 1 only at low temperatures. The onset of strong temperature dependence shifts to

a higher temperature as the magnetic field is increased. From Fig. 5-9, we identify

the characteristic temperature TC at which the slow rate rises to a value equal to the

geometric mean of the two tunneling rates at the lowest temperature (as indicated

by the arrows) and plot it as a function of magnetic field for samples p061998a

and p040297 in Fig. 5-10. The characteristic temperature TC rises almost linearly

as we increase the magnetic field. In this range of magnetic field, TC (∼450 mK

at 4.5 T) sets an energy scale that is much smaller than the Coulomb energy and
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Figure 5-10: Characteristic temperature TC vs. magnetic field for sample A (crosses) and sample
B (circles). TC is defined as the temperature at which the slow rate rises to a value equal to the
geometric mean of the two tunneling rates at the lowest temperature in Fig. 5-9.

the cyclotron energy (106 K and 90 K at 4.5 T respectively). The only obvious

energy scale comparable to TC is the Zeeman energy (1.3 K at 4.5 T). In other words

the development of the exchange energy gap at ν = 1 is not a sufficient condition

for tunneling to occur at two rates. The temperature must also be lower than the

Zeeman energy. For instance, at a field of 4.5 T and temperature of 1 K, a minimum

in the capacitance of the 2DEG is clearly observable at ν = 1 (Fig. 5-11a), indicating

the existence of the exchange energy gap. However, as Figs. 5-11b and c show,

electrons no longer tunnel at two rates at this temperature and magnetic field. In

most circumstances, the relevant energy scale associated with the ν = 1 quantum Hall

state is the Coulomb energy among electrons. It is the Coulomb exchange energy that

keeps the system ferromagnetic. However, in order for electrons to tunnel at two rates,

the temperature not only have to be lower than the Coulomb energy, but also lower

than the Zeeman energy. This, along with the fact that the double rate phenomenon

does not occur at even filling factors, strongly suggests that spin effects are crucial in
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explaining why tunneling occurs at two rates at ν = 1.

5.7 Phase Separation vs. In-plane Relaxation

Possible explanations of the double tunneling rate phenomenon at ν = 1 can generally

be classified into two approaches. In the first approach, electrons are assumed to

tunnel into the 2D system at a fast rate. The system then undergoes certain form of

relaxation, possibly spin related, within the 2D plane at the slow rate. Through the

spin relaxation, the 2D system is able to accept more electrons tunneling from the 3D

electrode giving rise to a second, slower tunneling rate. Unlike the fast tunneling rate,

the slow relaxation is expected to have no dependence on the thickness of the tunnel

barrier. A second approach considers the ν = 1 system bifurcating into separate

regions into which electrons tunnel at different rates. In contrast to the first scenario,

the ratio of the two tunneling rates should remain constant as the tunnel barrier

thickness is varied.

In order to differentiate between these two possibilities, we measure the relaxation

rates for samples grown in the same MBE machine with various tunnel barrier thick-

ness. Figure 5-12 plots results from three samples (p040297, p061998a and p092696)

with different barrier thickness. Each plot corresponds to result for a different sample.

For each sample, we show the tunneling rate at ν = 1/2 and ν = 1. At ν = 1/2,

we observe a single relaxation rate in all samples. The relaxation rate increases by

more than 3 orders of magnitude as the tunnel barrier becomes more transparent. At

ν = 1 the fast rate depends on the tunnel barrier thickness in the same manner. In

contrast, the slow rate at ν = 1 is relatively insensitive to the thickness of the tunnel

barrier, varying by less than a factor of 10 even when the ν = 1/2 relaxation rate

changes by a factor of 1000. In sample p040297, the relaxation rate at ν = 1 is faster

than the rate at ν = 1/2. However, in sample p092696, the opposite is true. The

relaxation rate at ν = 1/2 is slower than at ν = 1. This provides strong evidence that

the slow tunneling rate at ν = 1 is largely due to relaxation within the 2D plane.
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5.8 Spin Bottleneck for Tunneling

Before we continue with discussion of our results, let us summarize here the charac-

teristics of the double tunneling rate phenomenon:

• We detect two distinct relaxation rates that differ by up to a factor of 60 for

tunneling into ferromagnetic quantum Hall states at ν = 1, 3 and 1/3, but not

at ν = 2.

• The temperature must be lower than the Zeeman energy gµBB in order to

observe the slow tunneling rate.

• The slow tunneling rate is insensitive to variations in tunnel barrier thickness.

Since the slow tunneling rate only appears in spin-polarized quantum Hall states

at temperatures lower than the Zeeman energy, we describe it as arising from a“spin

bottleneck” in which in-plane spin relaxation must proceed before additional electrons

can tunnel into the system.

In Chapters 3 and 4 we discussed suppression of tunneling rate due to non-

equilibrium charge accumulation. Here we discovered that non-equilibrium spin ac-

cumulation can also reduce tunneling rates into a 2D system under the appropriate

conditions.

One example of in-plane relaxation that might be relevant is the formation of

Skyrmions around ν = 1, which we described at the beginning of this chapter in

section 5.1. For a perfectly uniform system precisely in the ν = 1 ferromagnetic

state, tunneling injects a single minority spin (Fig. 5-1a) because the thickness of the

tunnel barrier ensures that electrons tunnel as single entities. Since this is not the

lowest energy excitation, over time the 2D system can lower its energy by flipping

more spins to create Skyrmions (Fig. 5-1b). Because the energy of the 2D system

is lowered by Skyrmion formation, more electrons tunnel from the 3D electrode to

keep the chemical potentials on the two sides of the tunnel barrier aligned. When

the time scale for spin relaxation is long, the intermediate stage forms a bottleneck

and temporarily prevents more electrons from tunneling. The slow relaxation time
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of ∼1 ms is comparable to electron spin relaxation times measured in a recent NMR

experiment [50].

5.9 MacDonald’s Model for Tunneling at ν = 1

In this section we discuss a formalism proposed by MacDonald [51] to describe tun-

neling into the ν = 1 quantum Hall state. MacDonald finds that the double tunneling

rate phenomenon occurs only in the presence of non-equilibrium spin accumulation,

the magnitude of which depends subtly on the interplay of spin-dependent tunneling

conductances, thermodynamic density of states and spin relaxation rates.

5.9.1 General Formalism

MacDonald defines separate chemical potentials µ↑ and µ↓ for the 2D spin-up and

spin-down subsystems respectively. This is a valid assumption if the spin relaxation

time is much longer than other scattering times, as in the case for ferromagnetic

quantum Hall states. The following equations describe the spin-partition of current:

Q̇↑ = −µ↑G↑ + (µ↓ − µ↑)Gs

Q̇↓ = −µ↓G↓ + (µ↑ − µ↓)Gs (5.2)

where Qσ and Gσ are respectively the number of spin-σ electrons in the 2D system

and the tunneling conductance for spin-σ electrons (to simplify notation, we set the

electronic charge e to one). GS describes spin relaxation between electrons of oppo-

site spins. Here µσ is measured with reference to the chemical potential in the 3D

electrode.

Another set of capacitance equations relate the chemical potentials to accumulated

charges:

µ↑ = −V0 + (C−1)↑↑Q↑ + (C−1)↑↓Q↓

µ↓ = −V0 + (C−1)↓↑Q↑ + (C−1)↓↓Q↓ (5.3)
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where Vo represents the electrostatics contribution from charges external to the 2D

system. The inverse capacitance matrix contains an electrostatic contribution propor-

tional to the thickness of the tunnel barrier and a quantum mechanical contribution

arising from the finite thermodynamic DOS as well as correlations in the 2DEG:

(C−1)σσ′ =
1

Cg

+
1

A

dµ̃σ

dNσ′
(5.4)

where Cg = κA/xw is the geometric capacitance between the quantum well and the

3D electrode, A is the cross-sectional area of the 2D electron system, κ is the dielectric

constant, xw is the distance between the 3D electrode and the quantum well, µ̃σ is

the spin-σ chemical potential of the 2DEG relative to the conduction band edge and

Nσ is the number density for spin-σ electrons.

For non-interacting electrons, quantum contributions to the off-diagonal elements

of the inverse capacitance matrix vanish:

dµ̃σ

dNσ′
=

δσσ′

nσ

(5.5)

where nσ is the density of states for spin σ. δσσ′ equals 1 if σ = σ′ and equals zero

otherwise.

In general, dµ̃σ/dNσ′ is non-zero for σ 6= σ′ for an interacting system. For instance,

at filling factor ν = 1, creation of a Skyrmion consisting of 3 flipped spins requires the

addition of 4 minority spins together with the removal of 3 majority spins. Spin-up

and spin-down electrons must be added to the system according to a certain ratio in

order to form Skyrmions, giving rise to non-zero dµ̃↑/dN↓. One can refer to Ref. [51]

for the procedure to calculate dµ̃↑/dN↓.

To proceed, we rewrite Eq. 5.2 and 5.3 in matrix notation:

Q̇ = Gµ (5.6)

µ = −V0 + C−1Q (5.7)
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from which we can eliminate µ to obtain:

Q̇ = −GV0 + GC−1Q (5.8)

= −GV0 + BQ (5.9)

where B = GC−1. The boundary conditions for this set of first order coupled differ-

ential equation are:

Q↑(t = 0) = Q↓(t = 0) = 0 (5.10)

In our experiment, this corresponds to the fact that immediately after we apply the

voltage step, no extra charge has been transferred into the 2D system yet. Solving

Eq. 5.9 with the above boundary conditions yields the current due to spin σ:

Q̇σ(t) = Iσ,+ exp(−t/τ+) + Iσ,− exp(−t/τ−) (5.11)

In general, the current consists of two components with different relaxation rates τ−1
+

and τ−1
− that are the eigenvalues of matrix B:

1

τ±
=

B↑↑ + B↓↓
2

±
[
(
B↑↑ −B↓↓

2
)2 + B↑↓B↓↑

]1/2

(5.12)

Using Eq. 5.7, one can also obtain the instantaneous chemical potentials of the

spin-up and spin-down subsystems:

µσ(t) = −V0 + µσ,+[1− exp(−t/τ+)] + µσ,−[1− exp(−t/τ−)] (5.13)

where µσ,± =
∑

σ′ C
−1
σ,σ′Iσ′,±τ±. The two spin subsystems are in equilibrium at both the

beginning and the end of the tunneling process but are in general, out of equilibrium

at intermediate times. Non-equilibrium spin accumulation occurs when the chemical

potentials for the spin-up and spin-down electrons are not equal:

µ↑(t)− µ↓(t) = (µ↓,− − µ↑,−)(exp(−t/τ−)− exp(−t/τ+)) (5.14)
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To obtain Eq. 5.14 from Eq. 5.13, we made use of the relation µ↑,++µ↑,− = µ↓,++µ↓,−.

This follows from the fact that the chemical potentials of the two spin subsystems

(given by Eq. 5.13) equilibrate at t →∞.

5.9.2 Coupling of the Two spin subsystems through dN↑/dµ↓

and dN↓/dµ↑

As we mentioned earlier, this formalism incorporates correlation effects by the terms

dN↑/dµ↓ and dN↓/dµ↑ in the off-diagonal elements of the inverse capacitance matrix.

In fact, non-zero dN↑/dµ↓ and dN↓/dµ↑ are essential for explaining the double tun-

neling rate phenomenon we observed. In this subsection, we show that in the absence

of interactions in the 2D system that couple the spin-up and spin-down subsystems,

non-equilibrium spin accumulation will not occur even if the spin flipping rate is

very slow and/or the density of states for the two spin subsystems are significantly

different.

If we ignore correlations contributions dN↑/dµ↓ and dN↓/dµ↑ to the chemical

potential of the 2DEG, the inverse capacitance matrix reduces to:

C−1 =




1/Cg + 1/(An↑) 1/Cg

1/Cg 1/Cg + 1/(An↓)


 (5.15)

where A is the area of the 2D system, Cg is the geometric capacitance as defined

before, and nσ is the density of states for spin σ that might be significantly different

for spin-up and spin-down electrons. The tunneling conductance Gσ for each spin

subsystem is proportional to the density of states nσ:

Gσ = anσ (5.16)

and Gs (associated with spin flip) is proportional to the product of the density of

states in the up-spin and down-spin subsystems:

GS = bn↑n↓ (5.17)
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where a and b are proportionality constants. Equations 5.16 and 5.17 follow from

Golden rule estimates of the tunneling rate and the spin-flip rate respectively. Equa-

tion 5.9 becomes:




Q̇↑

Q̇↓


 = −aVo




n↑

n↓


+




an↑/Cg + (a + bn↓)/A n↑(a/Cg − b/A)

n↓(a/Cg − b/A) an↓/Cg + (a + bn↑)/A







Q↑

Q↓




(5.18)

We obtain the two relaxation times using Eq. 5.12:

τ−1
+ = a(1/A + (n↑ + n↓)/Cg) (5.19)

τ−1
− = [a + b(n↑ + n↓)]/A (5.20)

The tunneling current contributions from each of the two spin subsystems contain

two exponential decays with time constants τ+ and τ−:

I↑(t) = I↑,+ exp(−t/τ+) + I↑,− exp(−t/τ−) (5.21)

I↓(t) = I↓,+ exp(−t/τ+) + I↓,− exp(−t/τ−) (5.22)

Even though the solution contains two relaxation times, the boundary condition

Q↑(t = 0) = Q↓(t = 0) = 0 (Eq. 5.10) leads to the vanishing of both the prefac-

tors I↑,− and I↓,− of the slow decay (after a considerable amount of straightforward

mathematics):

I↑,− = I↓,− = 0 (5.23)

Therefore the total tunneling current, as well as its spin-up and spin-down compo-

nents, contain only a single exponential decay:

I(t) = I↑,+ exp(−t/τ+) + I↓,+ exp(−t/τ+)

= I+ exp(−t/τ+) (5.24)

where I+ = I↑,++I↓,+. Our observation of two decay times for tunneling into the ν = 1
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quantum Hall state is therefore evidence for interactions that couple the spin-up and

spin-down subsystems, leading to non-zero dN↑/dµ↓ and dN↓/dµ↑. This subsection

demonstrates that without this coupling, tunneling will only occur at a single rate

even if the density of states n↑ and n↓ are significantly different and the spin flip rate is

much slower than the tunneling rate (GS << Gσ). The reason non-equilibrium spin

accumulation does not occur is that the ratio of tunneling conductances (G↑/G↓)

equals the ratio of the thermodynamic DOS (n↑/n↓), which, by definition, is the rate

at which the chemical potential increases with density.

At ν = 1, MacDonald found that the ratio of fast to slow relaxation rates is

independent of Gσ and GS, provided the tunnel barrier is thin enough that Gσ À GS.

If, in addition, the quantum contributions (dNσ/dµσ′) dominates the geometric term

(Cg) of the inverse capacitance matrix, MacDonald found that τ−/τ+ = (2K + 1)2 =

49, where K = 3 assuming the lowest energy quasiparticle excitations at ν = 1 are

Skyrmions consisting of 3 flipped spins. In our experiment, the ratio of relaxation

rates has a value of 30 and 90 in samples p040287 and p061998a respectively (Fig. 5-

12), in rough agreement with MacDonald’s theory. Discrepancies might arise from

sample inhomogeneity at ν = 1.

5.10 Comment on double tunneling rates at ν = 3

There is one feature of the double rate tunneling phenomenon that is not explained by

the theory of Skyrmions. We observe that electrons tunnel at two distinct rates into

the 2D system at ν = 1, 3 and 1/3, as shown in Fig. 5-5. We associated the appearance

of two rates at ν = 1 by the formation of Skyrmions. Similar arguments apply to the

spin-polarized ν = 1/3 fractional quantum Hall state, whose charged excitations are

predicted [3, 4] to contain spin texture like at ν = 1. However, at ν = 3 Skyrmions

are predicted to have higher energies than excitations consisting of a single flipped

spin. A transport experiment by Schmeller et al. [46] demonstrated that at ν = 3 the

dependence of the energy gap on tilted magnetic field is consistent with elementary

excitations being ordinary single spin-flip excitations. Spin relaxation mechanisms
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other than the formation of Skyrmions could be responsible for the observation of

two tunneling rates at ν = 3.

5.11 Comparison to result from another research

group

We note that Dolgopolov et al. [32] reported tunneling relaxation measurements on

similar structures around ν = 1 and did not observe the bifurcation of rates described

in this Chapter. We believe that this experiment was performed over a range of

frequencies too low and narrow to permit detection of the fast rate, and we speculate

that their data reflect the behavior of the slow relaxation. Another possibility for

the discrepancy is the difference in mobility between their samples and ours. In

Dologpolov’s sample the capacitance signal at ν = 1 decreases only by 10% at 11.5T

[32]. This leads Dolgopolov to claim that the thermodynamic DOS of the 2DEG is

sufficiently high at ν = 1 so that the displacement current flowing out of their sample

is independent of the thermodynamic DOS. On the other hand, in our samples the

capacitance signal at ν = 1 drops by more than 90% at the same field of 11T at low

temperatures. The thermodynamic DOS of our 2DEG is thus very small at ν = 1.

We therefore believe that in our samples the Landau levels are much narrower in

energy and the 2DEG has much less disorder.

5.12 Summary

In this Chapter, we studied the effect of interactions among electronic spins on tun-

neling. We measure equilibrium tunneling between a 3D electrode and a high mobility

2D electron system. For most non-integer Landau level filling factors, we find that

tunneling can be characterized by a single, well-defined tunneling rate. However, for

spin-polarized quantum Hall states (ν = 1, 3 and 1/3) tunneling occurs at two distinct

rates that differ by up to 2 orders of magnitude. Upon increasing the temperature,

the slow rate speeds up and the double tunneling rate phenomenon disappears. The
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characteristic temperature is about 1/3 of the Zeeman energy. Furthermore, the slow

rate is largely due to relaxations within the 2D plane because it is insensitive to

variations in the tunnel barrier thickness in different samples.

From the above observations, we conclude that slow in-plane spin relaxation cre-

ates a bottleneck for tunneling of electrons into ferromagnetic quantum Hall states.

We also described a theoretical model by Allan MacDonald on non-equilibrium elec-

tron spin dynamics. MacDonald explains the double tunneling rate phenomenon by

the formation of Skyrmions in the tunneling process.
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Chapter 6

Future Prospects

In this thesis, we measured the tunneling conductance into 2D electron systems using

“time domain capacitance spectroscopy” (TDCS). Using TDCS, we are able to mea-

sure the complete current-voltage characteristics for tunneling even when the in-plane

conductance is very low. For the first time, we detect the contributions of both local-

ized and extended states to the tunneling current. TDCS has the unique capability

of measuring the tunneling current into structures to which direct ohmic contact is

difficult or impossible. We used TDCS to explore three different regimes of the 2DEG

in this thesis. First we study the logarithmic Coulomb anomaly for tunneling into

a disordered 2D electronic system. Then we demonstrated that in a magnetic field,

the tunneling conductance depends linearly on voltage, with a slope inversely propor-

tional to the magnetic field strength. Furthermore, we discovered that interactions

among electronic spins can also slow down tunneling into ferromagnetic quantum

Hall states, leading to non-equilibrium spin accumulation and the appearance of two

tunneling rates.

TDCS enables us to measure tunneling in regimes not accessible before by conven-

tional methods. We believe the results described in this thesis are only the beginning

of a series of interesting TDCS experiments. This chapter will describe potentially

interesting topics for future TDCS study.
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6.1 Tunneling into ν = 1 at tilted Magnetic Fields

In chapter 5, we observed two distinct tunneling rates into ferromagnetic quantum

Hall states. We presented evidence that the slower of the two rates is due to non-

equilibrium spin accumulation and possibly related to the formation of Skyrmion

excitations at ν = 1. We obtained the tunneling data in chapter 5 in a perpendicular

magnetic field with in-plane component equal to zero. For an ideal, infinitely thin 2D

system, an in-plane magnetic field only couples to the system through the Zeeman

energy, while the perpendicular field affects both the Zeeman energy and the orbital

motion that determines the filling factor. As we described in Chapter 5, the number

of flipped spins contained in a Skyrmion is determined by the ratio of the Zeeman

energy to the Coulomb energy. A small ratio favors the formation of Skyrmions. A

sufficiently strong in-plane component of magnetic field might decrease the number

of flipped spins a Skyrmion contains because it increases the Zeeman energy. In the

picture of MacDonald (section 5.9), this modifies the constraint of the ratio at which

spin-up and spin-down electrons must be added to the 2D system in order to create

a lowest energy excitation.

However, interpretation of tilted field tunneling data might not be straight for-

ward. In addition to the Zeeman coupling, the parallel component of magnetic field

modifies the transverse momentum conservation rules and alters the tunneling rate

[18], making it difficult to isolate spin effects.

6.2 Coulomb Anomaly in high mobility sample

In Chapter 3, we measured the logarithmic Coulomb anomaly for the first time in

semiconductor 2D systems. One key observation is that the logarithmic correction

persists to voltages higher than the inverse scattering time (1/τ) when electron motion

is quasi-ballistic. This regime is not accessible in thin metallic films because the

scattering time is much shorter and the quasi-ballistic regime occurs at too high

excitation voltages.
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We performed most of the measurements in Chapter 3 on samples that have a high

degree of disorder. For the high mobility samples used in our study of spin effects in

Chapter 5, the scattering time (τ) is expected to be significantly longer. Preliminary

measurements of the high mobility samples indeed indicates that the logarithmic

tunneling anomaly takes place at about four times lower densities compared to the

more disordered samples. Recall that the corrections to the single particle DOS are

universal in systems with identical EF τ . Since EF is a factor of 4 smaller in the high

mobility samples when the corrections are significant, τ is larger by the same factor.

This shifts the onset of the quasi-ballistic regime to voltages a factor of 4 smaller

compared to the more disordered samples. In other words, the high mobility samples

should provide an even larger voltage range for studying the quasi-ballistic behavior

of electron motion.

6.3 Single Particle Density of States in a non-quantizing

Magnetic Field

The density of states of a 2D system in strong magnetic field consist of Landau levels.

In a sufficiently weak magnetic field, the energy separation between two adjacent Lan-

dau levels h̄ωc (where ωc is the cyclotron frequency) is smaller than their disordered-

induced width and the Landau quantization peaks disappear if ωcτs ¿ 1, where τs

is the electron quantum lifetime. Rudin et al. [52, 53] recently studied theoretically

the effect of electron-electron interactions on a 2D electron system in such a “clas-

sical” magnetic field. They found that if the disorder potential is weak and smooth

(with correlation length much larger than the Fermi wavelength and amplitude much

smaller than the Fermi energy), electrons experience small-angle scattering. The

corresponding transport relaxation time τtr is considerably larger than τs. For the

magnet field range satisfying ωcτs ¿ 1 ¿ ωcτtr, the classical trajectories are strongly

affected by the magnetic field even though Landau quantization is destroyed. Rudin

predicted that contrary to the non-interacting case, there are significant corrections
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to the single particle density of states in this regime, resulting in peaks separated

by the cyclotron energy. Unlike the Landau levels in strong field, the amplitude of

the peaks decreases and their widths increase as a function of energy from the Fermi

level.

To our knowledge, there has not been any experimental verification of Rudin’s the-

ory. Even though this thesis concentrates on tunneling conductance measurements

in various low excitation regimes, TDCS should have no problem resolving the os-

cillations at high excitations predicted by Rudin. According to Rudin, the range of

magnetic field where this theory is applicable depends on sample mobility. For high

mobility samples, it is between 0.001T and 0.05T. This range shifts to higher fields

in more disordered samples.

6.4 Excitation Voltage Study of the Tunneling En-

hancement at weak magnetic field

In section 3.6, we described the enhancement of zero-bias tunneling conductance

in a weak magnetic field at the density range over which the logarithmic Coulomb

anomaly in tunneling occurs. As we mentioned, we cannot determine whether the

enhancement is due to suppression of the Cooper channel interaction or a combination

of interactions and weak localization effects. Measuring the excitation dependence of

the conductance in a weak perpendicular and/or parallel magnetic field might enable

us to distinguish between the two possibilities.

6.5 Excitation Voltage Dependence of Tunneling

Conductance at Even Denominator Filling Fac-

tors

Recently, even denominator fractional quantum Hall states have received considerable

attention. Lily [54] reported that at large half-integer fillings such as ν = 9/2, 11/2
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and 13/2, in-plane transport measurements display strong anisotropy. The in-plane

resistance attains either a maximum or a minimum at these filling factors depending

on the orientation of the current. Such anisotropy is not present for lower filling

factors of ν = 7/2 and below. Koulakov et al. [36] predicted that a clean 2D system

in the third or higher Landau levels may be unstable against the formation of charge

density waves. The stable configuration is a stripe phase where the filling of the

highest Landau level alternates between zero and one. Koulakov showed that the gap

in the single particle DOS depends linearly on magnetic field for such system.

There has also been proposal of the possibility that a superconducting state might

exist at ν = 5/2 [55, 56, 57]. At ν = 5/2, the lowest Landau level is completely

filled and the lower spin-split level of the second Landau level is half filled. The

superconducting state, if applicable, arises from a two-step process. First, electrons

in the second, half filled Landau level forms a Fermi sea of composite Fermions [58],

which then pair and condense into the novel superconducting state. Although the

concept of the new phase is very interesting, so far there has not been experimental

evidence for such a state.

Given the richness of the physics of even denominator fractional quantum Hall

states, one would expect measurement of the tunneling conductance into high mobility

2D systems using TDCS, in particular the excitation voltage dependence, might yield

useful information that might enable better understanding of their properties.

6.6 Reproducible Fluctuations in Equilibrium tun-

neling conductance

In Chapter 5, we focused on the double relaxation rate phenomenon for tunneling

into the 2D system at odd integer filling factors. As shown in Fig. 5-5 the equilibrium

tunneling conductance of the sample varies by more than 3 orders of magnitude

depending on the exact value of the filling factor ν. In sample p092696a, we measured

the equilibrium tunneling relaxation rate in very small steps in sample bias and found
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Figure 6-1: Relaxation rate as a function of sample bias for sample p092696a at 10T and 30
mK. The inset, which has identical axes and units as the main figure, illustrates the reproducible
fluctuations by zooming into the bias range 125mV to 150mV of the curve in the main figure.

that the relaxation rate exhibits reproducible fluctuations, as shown in Fig. 6-1. At

the peaks the relaxation rate increases by as much as a factor of 4. The range of

sample bias displayed in Fig. 6-1 corresponds to filling factors ν from 0.28 to 0.7

approximately. The oscillation pattern changes upon thermal cycling, but the range

of sample bias at which the fluctuation occurs remains essentially unchanged.

Figure 6-2b displays the evolution of the fluctuations with magnetic field. For

each successive curve from the top, the magnetic field increases by 0.1T. We have

subtracted a smooth background from the tunneling current. As the magnetic field

is increased, the fluctuating features shift in sample bias by approximately the same
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Figure 6-2: (a) Tunneling current vs sample bias at 10T. The excitation voltage is 12 µV across
the tunnel barrier. (b) Evolution of the fluctuations as the magnetic field increases. We eliminate
the smooth variation in (a) by fitting a 6th order polynomial and subtracting it from the data. The
curves are displaced vertically for clarity. For each successive curve from the top, the magnetic
field increases by 0.1T. The filled circle indicates the shift in position of a particular peak as the
magnetic field increases and the dotted line marked the sample bias at which the ν = 1/3 minimum
in tunneling conductance occurs.

amount, independent of the filling factor at which they occur. For instance, the filled

circles follow the shift in position of a particular peak as the magnetic field increases.

The peak shifts by about 2mV in sample bias in Fig. 6-2b, comparable to the increase

in cyclotron energy for the same increase in magnetic field. Apart from the shift in

sample bias, there are no clear trends for the evolution of the peaks. Different peaks

appear or disappear as the magnetic field increases. Another remarkable feature is

that the fluctuations are mostly absent when the filling factor ν is close to 1/3.

Currently we do not have sufficient data to determine the origin of these fluctu-

ations in tunneling conductance. One obvious possibility is the presence of impurity

levels in the tunnel barrier that leads to resonances in tunneling. However, it is

unclear why the fluctuations are absent at zero magnetic field and only occur at a
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certain range of magnetic fields and sample bias. More experimental work is required

to understand these conductance fluctuations.

6.7 Tunneling Rates into Quantum Dots and Spec-

troscopy of Excited States

This thesis focuses on TDCS measurements of the tunneling rates into 2D electron

systems. As we pointed out in Chapter 2, TDCS is also capable of measuring the

tunneling rate into a quantum dot. A quantum dot is a mesoscopic structure in

which electron motion is confined in all three directions, unlike in 2D systems where

only a single direction of motion is constrained. To create quantum dots in GaAs, one

typically starts with a 2DEG at the interface of GaAs/AlGaAs or in a GaAs quantum

well. Lateral confinement is provided either by applying negative voltages to metallic

gates patterned on the surface of the heterostructure, or by selectively etching of the

wafer while protecting the quantum dot with metal or photoresist [59, 60]. Ashoori

et al. developed single electron capacitance spectroscopy (SECS) [61] to resolve the

energy levels corresponding to the addition of single electrons in structures that are,

apart from the lateral confinement, similar to the ones described in this thesis. One of

the major advantage of SECS is that it is capable of measuring the addition spectrum

to a quantum dot containing as few as one electron.

A combination of SECS and TDCS might allow one to measure the tunneling rate

into single electron energy levels, as well as the excited states spectrum in quantum

dots that contain only few electrons. Figure 6-3 illustrates this idea. In Fig. 6-3a, the

bottom 3D electrode is in equilibrium with the quantum dot. An excitation voltage

step of V1 = e/C (where C is the capacitance of the dot to the surroundings) is

necessary to add an electron to the dot (Fig. 6-3b). We can further increase the

excitation voltage to V2 = V1 + δV so that the electron can also tunnel into the first

excited state of the dot (Fig. 6-3c). Here δV is the quantum level spacing of the dot

due to the lateral confinement. Since electrons can tunnel into both the ground state
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Figure 6-3: (a) Energy band diagram for a 3D electrode in equilibrium with a quantum dot
consisting of 3 electrons. (b) An extra electron tunnels onto the dot when the excitation step
voltage is V1 = e/C. (c) When the excitation voltage equals V2 = V1 + δV (where δV is the energy
level spacing of the dot), electrons can tunnel into both the ground state and first excited state of
the dot. (d) There is a sudden increase of the equilibration rates when the excitation amplitude
reaches V1 and V2.
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and the first excited state, the equilibration rate increases, as illustrated by Fig. 6-3d.

Therefore, by measuring the dependence of equilibration rates as a function of voltage

step amplitude, one can map out the excited states spectrum of the dot.

We have perform some preliminary experimental investigations of the feasibility

of combining SECS and TDCS. We managed to resolve the addition energies of a

dot by recording the time response using an EG&G 9825 averager (an earlier version

of 9826) instead of using a lock-in amplifier as in SECS. However, we did not have

the necessary bandwidth to determine the tunneling rates of current SECS samples.

The major limitation is the coaxial cable connecting the sample to the preamplifer

located outside the cryostat. There are two possible solutions to this problem. One

can decrease the tunneling rate by designing samples with thicker tunnel barrier.

Alternatively, one can apply a strong magnetic field to reduce the tunneling rate.

In any case, we expect the combination of TDCS and SECS to be an extremely

challenging experiment.
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Appendix A

Extracting the Tunneling Current

from Response of the Sample to a

Step Voltage

This appendix describes how we deduce the current flowing across the tunneling

barrier after application of the excitation voltage. As we mentioned in Chapter 2,

there are no direct ohmic contacts to the 2DEG in our samples, and we cannot measure

the tunneling current directly through conduction in the 2D plane. To measure the

tunneling current, we utilize the fact that as electrons tunnel from the bottom 3D

electrode into the 2D sheet, they repel electrons from the top electrode. We measure

the displacement current ID coming out of the top electrode by allowing this current

to charge a standard capacitor CS of known value. In this appendix, we show that

the tunneling current is proportional to the time derivative of the voltage VS across

the standard capacitor:

Itunnel = −CΣ
dVS

dt
(A.1)

The proportionality constant CΣ has dimensions of capacitance and is given by:

CΣ =
CblockCtunnel + CtunnelCS + CblockCS

Cblock

(A.2)
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Figure A-1: This figure shows the band structure of the sample after application of the voltage
step, with the equivalent circuit model of the sample underneath. The standard capacitor CS and
the transistor on the right are external circuit elements used to detect the tunneling current.

where Cblock is the geometrical capacitance κA/xg between the quantum well and

the top electrode, while Ctunnel is the geometrical capacitance κA/xw between the

quantum well and the substrate. Here A is the area of the 2D system and κ is

the dielectric constant of GaAs. Equation A.2 follows from charge conservation and

Poisson’s equation in a rather straightforward manner described below.

Figure A-1 shows the conduction band energy and equivalent circuit diagram of the

sample, as well as the standard capacitor CS and transistor used to detect the voltage

VS across CS. Assuming a sheet charge model for electrons in the quantum well and
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the two electrodes, Poisson’s equation determines the following set of equations:

Uw(t) = US(t)− e2

κ
xwσS(t) (A.3)

Ug = US(t)− e2

κ
(xw + xg)σS(t)− e2

κ
xgσw(t) (A.4)

σw(t) and σS(t) represent the number density of excess electrons in the quantum well

and the substrate respectively. Uw(t) and US(t) are the electrostatic potential energies

at the conduction band edge of the quantum well and the substrate respectively, with

respect to the potential energy at infinity (ground). Ug is the electrostatic potential

energy of the conduction band edge of the top electrode, which is constant in time

after application of the excitation voltage step. e is the magnitude of the electronic

charge.

From charge conservation:

Itunnel(t) + ID(t) = A|e|dσS(t)

dt
(A.5)

Itunnel(t) = −A|e|dσw(t)

dt
(A.6)

where Itunnel is the tunneling current of interest that flows across the tunnel barrier

and ID is the displacement current coming out of the substrate. ID charges the

standard capacitor CS:

ID(t) = −CS

|e|
dUS(t)

dt
(A.7)

US/e is the voltage on the top gate of CS, which is amplified by the transistor and

recorded. In practice, voltage steps of opposite polarity are applied to the other plate

of CS and the top electrode of the sample at precisely the same instant t = 0, as

described in Chapter 2. For t > 0 the voltage on the bottom plate of the capacitor

is constant, hence ID is proportional to the time derivative of the voltage on the top

capacitor plate in Eq. A.7.

From Eqs. A.3, A.4, A.5, A.6 and A.7, we eliminate σw(t), σS(t), Uw(t) and Im(t),

and write Itunnel as a function of US. We outline the procedure below. First we take
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the time derivative of Eq. A.3 and A.4:

dσS(t)

dt
=

κ

e2xw

[
dUS(t)

dt
− dUw(t)

dt

]
(A.8)

dσw(t)

dt
=

κ

e2xg

dUS(t)

dt
− (xw + xg)

xg

dσS(t)

dt
(A.9)

=
κ

e2xw

[
(xw + xg)

xg

dUw(t)

dt
− dUS(t)

dt

]
(A.10)

Equation A.10 follows from Eq. A.9 by substituting dσS(t)/dt from Eq. A.8. Next we

substitute Eqs. A.8 and A.10 into Eqs. A.5 and A.6 respectively to obtain:

Itunnel(t) + ID(t) =
Aκ

|e|xw

[
dUS(t)

dt
− dUw(t)

dt

]
(A.11)

Itunnel(t) = − Aκ

|e|xw

[
(xw + xg)

xg

dUw(t)

dt
− dUS(t)

dt

]
(A.12)

Since ID is proportional to dUS(t)/dt as in Eq. A.7, we can eliminate dUw(t)/dt from

Eqs. A.11 and A.12 to obtain a relation between Itunnel and ID:

Itunnel(t) = −
(

CblockCtunnel + CblockCS + CtunnelCS

CblockCS

)
ID(t) (A.13)

Substituting Eq. A.7 into Eq. A.13, we complete the derivation of Eq. A.1:

Itunnel(t) =
(

CblockCtunnel + CblockCS + CtunnelCS

Cblock

)
1

|e|
dUS(t)

dt
= −CΣ

dVS

dt
(A.14)

where CΣ is given by Eq. A.2. The tunneling current is thus proportional to the time

derivative of the voltage across the standard capacitor.

Note that Eq. A.14 does not contain explicitly the thermodynamic density of states

dN/dµ of the 2D system. Provided that the capacitance bridge is properly balanced

(section 2.4.2), variations of Itunnel arising from finite dN/dµ are incorporated into

the voltage signal VS(t), as we will describe below. In contrast, the relaxation rate of

the chemical potential difference across the tunnel barrier does depend on dN/dµ. To
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illustrate the difference, let us consider the linear response limit when the excitation

voltage is smaller than the thermal energy kT . In this limit, Ashoori found that the

relaxation rate of the chemical potential across the tunnel barrier is given by [7]:

1

τ
=

1

τtunnel

[
Ae2gs

Ctunnel

(1− xw

xg

) + 1

]
(A.15)

where 1/τtunnel is the mean tunneling rate per electron, determined by the thickness

of the tunnel barrier. For simplicity, we assumed that the single-particle density of

states gs and thermodynamic density of states dN/dµ are identical. From Eq. A.15,

when gs goes to zero, the relaxation rate is equal to the tunneling rate:

1

τ
=

1

τtunnel

(A.16)

In other words, the relaxation rate does not go to zero even when the density of

states vanishes. The tunneling current, nevertheless, must go to zero since there are

no states in the 2D system for electrons to tunnel into. There is no contradiction

because the tunneling current is proportional to the initial time derivative of the

voltage across the standard capacitor VS that is equivalent to the product of the

initial voltage VS(t = 0) and the relaxation rate 1/τ , as we described in section 2.4.3:

Itunnel ∝ −dVS

dt
|t=0 = VS(t = 0)

1

τ
(A.17)

VS(t = 0) is proportional to the amount of charge transferred into the 2D system

in the tunneling process when an excitation voltage step is applied. Variations of

Itunnel arising from finite dN/dµ are contained implicitly in VS(t). For instance, in

the limit when the density of states of the 2D system vanishes, there is no tunneling

of electrons and VS(t = 0) goes to zero. From Eq. A.17, the tunneling current goes

to zero accordingly even though the relaxation rate 1/τ remains non-zero as given by

Eq. A.16.
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Appendix B

Increasing Voltage Resolution by

Digital Dithering

This appendix describes the dithering technique we used to increase the voltage res-

olution of the signal averager. We designed our dithering circuit and software based

on the Ph.D. thesis of Monroe [62] and Stathis [63]. There have been significant im-

provements in the speed of electronics since Monroe and Stathis implemented their

analog dithering circuit. We are able to construct a dithering scheme based on a

digital-to-analog voltage card inserted into the same computer where the 9826 signal

averager resides.

The analog-to-digital convertors (ADC’s) in the signal averager has a voltage

resolution of 8 bits. We find that such resolution is inadequate for our experiment

which requires accurate measurement of the initial time derivative of the signal. It

is necessary to increase the effective resolution of the ADC’s by a “digital dithering”

technique. Fig. B-1 illustrates the basic concept of dithering. Suppose the signal that

we are measuring is a linear ramp. The digitized signal recorded will be a series of

steps no matter how many times we average the signal (Fig. B-1a) if the root-mean-

square noise is smaller than the resolution δ of the ADC. In Fig. B-1b we add to

the signal a DC offset of δV/2 and therefore change the horizontal positions of the

steps of the averager output. If we now average the two waveforms in Figs. B-1a

and b, we obtain a result that is a more accurate representation of the original ramp
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Vsignal

δV

Vsignal + δV/2

digitization

(V1+V2)/2

digitization

(a)

(b)

(c)

Figure B-1: Demonstration of the effect of dithering on a linear ramp signal. (a) Digitization of
the ramp produces a series of steps. (b) Digitization of the ramp offset by half the voltage resolution
leads to a series of step slightly shifted in time. (c) Averaging the digitized signal in (a) and (b)
effectively increased the resolution by a factor of 2.

147



−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Offset Voltage(V)

A
rb

itr
ar

y 
U

ni
ts

Figure B-2: The dithering voltages partition the area under a Guassian distribution equally. In
this example, there are 16 dithering voltages. The standard deviation of the Guassian is 1V and
the area under the Guassian is normalized to 1. Area between two adjacent thin vertical lines is
constant and equal to 1/16.

(Fig. B-1c). Instead of using only 2 DC offset voltages, we use as many as 256 DC

offsets to obtain each time trace in our experiment.

We select the DC offsets so that they partition the area under a Gaussian equally,

as shown in Fig. B-2 for the case of only 16 offset voltages. To avoid non-uniformity

in the separation between adjacent bits in the ADC’s, we use the largest possible

width for the Guassian while keeping the trace with the DC offset in range of the

averager. This way we utilize the full range of the averager for each averaged time

trace.

Through dithering, we effectively increase the vertical resolution of the averager

from 8 bit to 16 bit, a 256-fold improvement.
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Appendix C

Sample Fabrication

In this appendix we describe the fabrication process of our samples. Our typical

sample contains a quantum well sandwiched between two electrodes, as we described

in Chapter 2. The goal of the fabrication process is to make independent electrical

contacts to the top and bottom n-doped GaAs without shorting to the quantum well.

For samples without dopants in the AlGaAs blocking barrier described in Chapters 3

and 4, it is rather straightforward to create the top Schottky contact. In contrast,

making the top ohmic contacts to the high mobility samples in Chapter 5, which do

not contain dopants in the AlGaAs blocking barrier, requires more caution. In the

fabrication of ohmic contacts between metal and semiconductors, it is desirable to

have a low and linear contact resistance. The contacts in our samples are no exception.

However, at the same time we need to prevent the metalization from penetrating too

deep into our heterostructure so that it shorts the top electrode to the quantum well.

We adopt a fabrication process that compromises between these two requirements.

The most common metalization for making ohmic contacts to n-doped GaAs is

germanium/gold/nickel [64]. Unfortunately, upon annealing, the metalization pene-

trates up to 1 µm into the GaAs, a distance comparable to the thickness of our top

n-doped GaAs layer. We found indeed that almost all of our samples have the top and

bottom electrodes shorted if we use germanium/gold/nickel as the top metalization.

Therefore, germanium/gold/nickel metalization is not acceptable for the top ohmic

contact. Instead we have to use the less penetrating germanium/palladium/gold
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contact, based on solid phase epitaxy [65, 66, 67]. The adaptation of the germa-

nium/palladium/gold contact increases the yield of working samples to an acceptable

level. We describe the procedure for making the germanium/palladium/gold contact

in detail in this appendix.

Mesa isolation is another essential step in the fabrication process. For samples

with dopants in the AlGaAs blocking barrier, the chromium-gold Schottky contact

provides a stable enough etching mask to protect the GaAs wafer that it covers.

However, we find that both germanium/gold/nickel and germanium/palladium/gold

metalization peal off from the GaAs wafer after a standard sulphuric acid/hydrogen

peroxide/water wet etch. It seems likely that the etchant attacks germanium in the

metalization. Therefore, we need to perform a second lithographic step to cover the

metalization with photoresist for the wet etch. This step is not necessary for the

samples with chromium/gold Schottky contacts.

C.1 Fabrication Procedure for Samples with Schot-

tky Top Electrode

In Chapters 3 and 4 we measured samples with dopants in the AlGaAs blocking

barriers. As described in sections 3.2 and 4.1, these samples consist of undoped

GaAs top layers and the top metalization forms Schottky contacts. The fabrication

procedures for these samples are as follows:

1. Glue samples face down onto a glass glide using PMMA. Bake glass slide with

the samples at 130oC for 1 minute so that the PMMA hardens.

2. After a quick etch using 1:8:1000 H2SO4/H2O2/H2O for ∼ 15 seconds, load the

sample into an evaporator and deposit metallic layers according to the following

sequence and thickness: nickel 50 Å, germanium 450 Å, gold 40 Å, nickel 350

Å, gold 1500 Å.

3. Clean the samples in acetone to strip the PMMA. Then anneal the samples at

425oC for 30 seconds in nitrogen gas to form the bottom contact.
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4. Pattern samples with a negative photoresist NR8-1000 to facilitate metal lift

off in step 6.

5. Glue samples to glass slide using PMMA. Put samples in UV asher to get rid

of photoresist residuals in the exposed regions. Load in evaporator and deposit

50 Å of chromium and 1250 Å of gold.

6. Metal liftoff by putting the samples in acetone with ultrasonic agitation.

7. Wet etch to isolate the mesas using the metalization as etching mask. The

etchant is 1:8:1000 H2SO4/H2O2/H2O. It removes GaAs at about 400 Å/min

with constant stirring. For our samples with mesas up to 100 µm in diameter,

etch until the bottom n doped GaAs is reached.

8. Using silver epoxy, attach the sample onto a piece of GaAs, slightly larger

than the sample and evaporated with gold. The back contact is now accessible

through the gold on base piece of GaAs.

C.2 Fabrication Procedure for Samples with Ohmic

Top Electrode

In Chapter 5 we studied very high mobility samples with no dopants in the AlGaAs

blocking barrier. We obtained these samples from Loren Pfeiffer and Ken West (Bell

laboratory, Lucent Technologies). During MBE growth, the back side of the samples

are usually covered by gallium that must be removed to form the bottom ohmic

contact. The top layer of the wafer is n+ doped GaAs. In order to avoid the top

ohmic contact from penetrating too deep to short the quantum well, the fabrication

procedures for these samples are more complicated:

1. Glue samples face down onto a glass glide using photoresist to protect the front

side. Put sample in hydrochloric acid to dissolve the gallium on the back surface.

Heating might be necessary. However the temperature must be kept below 70oC

to avoid damaging the photoresist protection of the front side.

151



2. Remove the samples from the glass slide using acetone. Re-glue samples face

down onto a glass glide using PMMA. Bake the glass slide with the samples at

130oC for 1 minute so that the PMMA hardens. This step is necessary because

PMMA holds the samples better than regular photoresist when the samples are

heated during metal evaporation.

3. After a quick etch using 1:8:1000 H2SO4/H2O2/H2O for ∼ 15 seconds, load the

sample into an evaporator and deposit metallic layers according to the following

sequence and thickness: nickel 50 Å, germanium 450 Å, gold 40 Å, nickel 350

Å, gold 1500 Å.

4. Clean the samples in acetone to strip the PMMA. Then anneal the samples at

425oC for 30 seconds in nitrogen gas to form the bottom contact.

5. Pattern samples together with an ordinary n doped GaAs test wafer with a

negative photoresist NR8-1000 to facilitate metal lift off in step 7.

6. Glue samples and test wafer to a glass slide using PMMA. Put glass slide in

UV asher to get rid of photoresist residuals in the exposed regions. Load in

evaporator and deposit metal according to the following sequence and thickness:

palladium 500 Å, germanium 1275 Å, gold 1400 Å.

7. Metal liftoff by putting the samples in acetone with ultrasonic agitation.

8. Anneal the test wafer for 20 minutes in nitrogen gas at different temperatures in

the range of 240oC to 290oC. Then test the contact resistance at liquid nitrogen

temperature. This test is necessary because the lowest temperature to achieve

ohmic contacts differs for each run. Typically a minimum temperature of 265oC

is necessary for good ohmic contact. Anneal the sample at a temperature 10oC

above the minimum contact temperature for 20 minutes. Test the contacts at

liquid nitrogen temperature to make sure it is ohmic.

9. Align and pattern the samples with a positive photoresist, which acts as etching

masks in a step 10. Use a lithography mask with features 5 µm larger than the
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metal pattern to completely cover the metal with photoresist.

10. Wet etch to isolate the mesas using the photoresist as etching mask. The

etchant is 1:8:100 H2SO4/H2O2/H2O. It removes GaAs at about 4000 Å/min

with constant stirring. For our samples with mesas up to 100 µm in diameter,

etch until the bottom n doped GaAs is reached.

11. Dissolve the photoresist in acetone.

12. Using silver epoxy, attach the sample onto a piece of GaAs slightly larger than

the sample and evaporated with gold, through which the back contact of the

sample is accessible.
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