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Abstract 

This thesis describes the implementation of an aluminum single-electron 
transistor (SET) as a sensor in charge measurement experiments on semiconductor 
quantum dots.  We have used the SET to measure the charge quantization on the quantum 
dot while varying the strength of the coupling between the dot and the leads.  The 
strength of the coupling has a strong effect on the quantum fluctuations of charge on the 
quantum dot, which can destroy the Coulomb blockade. 

The quantum dot is electrostatically defined with metal gates on top of a 
GaAs/AlGaAs heterostructure.  The patterning of these metal leads and the SET is 
performed with electron-beam lithography.  The technique of double-angle evaporation is 
used for the fabrication of the SET.  The SET functions both as one of the defining gates 
for the quantum dot and as an electrometer.  The capacitively-coupled SET is extremely 
sensitive to charge on the quantum dot.  We control the quantum fluctuations in the dot 
by varying the conductance of a single tunnel barrier which connects the dot to a charge 
reservoir. This experimental setup provides us with excellent charge sensitivity and 
allows us to measure the lineshape with adequate precision to quantitatively compare 
different theoretical predictions.   
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Chapter 1 Introduction 

1.1 Charge quantization 

The charge on a small isolated puddle of electrons is quantized: it consists of an integer 

number of electrons.  Also, this charge can change only in units of single electrons.  For a 

single electron to jump on or off this puddle, it has to overcome an energy barrier, 

E
e
Cc =

2

2 Σ
, which is equivalent to charging a capacitance CΣ by the charge of a single 

electron, e.  Here, CΣ is the total capacitance of the puddle to the environment.  This 

effect is referred to as Coulomb Blockade [1-1].  The above description of charge 

quantization comes with a caveat:  the conductance of the tunnel barrier which couples 

the puddle to the environment has to be much less than 
2 2e
h

.  Otherwise, the 

quantization of charge on the puddle is destroyed by quantum fluctuations of charge 

between the puddle and the environment [1-2].  An alternate description of this effect 

considers that at conductances larger than 
2 2e
h

, the width of the energy levels on the 

puddle is equal to the spacing between them, and the mean charge on the dot varies 

continuously with changes in an externally defined potential. 

 

There are several theoretical treatments of the effect of increased tunnel coupling of the 

dot to the reservoir on the quantization of charge on the dot [1-3][-4][1-5].  The exact 
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nature of the energy level broadening has only recently been probed experimentally 

through transport [1-6] and charge [1-7] measurements on the dot.  Unfortunately, the 

exact shape of the energy levels on the quantum dot is difficult to attain with transport 

measurements.  The published data of quantum dot charge measurements [1-7] have had 

low signal-to-noise ratios, making it difficult to discern whether or not there was good 

agreement with theoretical calculations.   

 

We have conducted experiments using an aluminum single-electron transistor (SET) to 

measure charge on a quantum dot with high precision.  The techniques that we used in 

the fabrication of the SET are described in Chapter 2, and the operation of the device is 

described in Chapter 3.  With the single-electron transistor as an electrometer, we have 

obtained a sensitivity of 12 10 3. × − e
Hz

to charge on the quantum dot.  The corresponding 

sensitivity to charge on the gate of the was 6 10 5× − e
Hz

.  This value of charge 

sensitivity is comparable to the record values published in the literature [1-8][1-9].   

 

The charge measurements were performed as we varied the strength of the coupling 

between the quantum dot and the environment.  The high charge sensitivity in our 

measurements allowed us to compare the data with various theoretical calculations.  We 

found that the theory based on renormalizing the charging energy of the dot [1-5] 

compare poorly with our data, especially in the regions between the centers of the peaks.  

The calculations that combine the thermal broadening of the energy levels with a lifetime 

broadening by convolving a derivative of the Fermi function with a Lorentzian fit our 
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data better, but there also is discrepancy between the peak centers.  Finally, we compared 

our measurements with calculations based on perturbation theory.  These theoretical 

calculations were performed in two limits.  The weak coupling theory [1-3] used the 

transmission probability through the tunnel barrier coupling the dot to the reservoir as a 

small parameter in the perturbation calculations.  On the other hand, the strong coupling 

theory [1-4] used the reflection amplitude as a small parameter.  We found good 

agreement between our data and these calculations in both weak and strong coupling 

limits.  These results are presented in Chapter 5. 

 

Aside from the measurements of the energy level broadening of the quantum dot, we 

have also observed some curious behavior of electrons in some of our samples.  Usually, 

the electrons tunneling onto the quantum dot from a grounded reservoir are attracted by a 

positive voltage and repelled by a negative one.  Sometimes, we observe an opposite 

response:  electrons seem to be repelled by a negative voltage.  This effect, referred to as 

"negative screening" is described in Chapter 6.  

 

1.2 Potential applications of the single-electron transistor 

The quantum dot energy level broadening measurements with the aluminum single-

electron transistor are an excellent example of the potential usefulness of this device.  

There are many applications that can benefit greatly from its superb charge sensitivity.  

For example, experimenters have used a single-electron transistor to create a map of the 

charge distribution in a Two-Dimensional Electron Gas (2DEG) [1-10].  They fabricated 
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an SET on the tip of a small tube, which was scanned over the surface of the sample.  The 

current through the SET was significantly modulated by charge in the 2DEG, enabling 

the measurements to discern variations in the electron density.   

 

Other potential applications of the single-electron transistor can be in data storage.  One 

can imagine quantum dots on the surface of a disk used to store information.  An SET 

fabricated on a probe above the disk can be used to read this information.  This 

application can lead to an enormous data storage density. 

 

Of course, to be useful for commercial applications, the single-electron transistor has to 

operate at room temperature.  Since CΣ is directly proportional to the surface area of the 

puddle, it is crucial to use the smallest possible dimensions for single-electronic devices 

to increase the charging energy.  With standard nanolithographic techniques, it is easy to 

obtain device dimensions on the order of 50-100nm.  Generally, such devices operate 

only at temperatures below 4K, the boiling point of 4He.  Thus, many researchers are 

working towards fabricating SETs, whose maximum operating temperature approaches 

300K [1-11][1-12][1-13].  Another beneficial property of these devices is they have been 

fabricated in silicon with technology that is compatible with the silicon MOS technology 

used in industry today, although the size of the active area in these devices must be kept 

on the order of 2nm to increase the operating temperature to 300K.   

 

Most of the proposed room-temperature applications of the single-electron transistor have 

been in memory, but some research has been directed towards building logic elements [1-
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14][1-15].  The application of SETs to logic circuits is actually quite difficult, because 

these devices are quite sensitive to any spurious movement of charge in close vicinity.  A 

fluctuation of the state of a charge trap or an impurity close to the SET can cause the 

logic element to generate a erroneous signal in the circuit.  Thus, the most obvious 

application of the SET is in charge detection, rather than logic circuits. 
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Chapter 2 Fabrication 

2.1 Lithography  

As described previously, for single-electron transistors to be useful at temperatures easily 

attained with modern refrigeration techniques (T=50-300mK), the critical dimensions of 

these devices must be less than 100nm.  Conventional photolithography does not allow 

faithful reproduction of patterns at such small dimensions.  The impeding parameter of 

this technology is the relatively large wavelength of the radiation used to expose the 

resist (λ=365nm in most systems available at MIT, λ=248nm in modern 

photolithography systems used in industry today).  When the wavelength of the radiation 

becomes comparable to the critical dimensions of the pattern, diffraction causes 

degradation of the pattern fidelity.  So generally, the radiation wavelength should be 

much smaller than the pattern dimensions.  The semiconductor industry has been able to 

use complex and expensive techniques such as phase shift masks [2-1] and optical 

proximity correction [2-2] to compensate for some of the diffraction  effects and use 

radiation wavelengths (λ=248nm) that are comparable to the feature sizes (l=0.25µm).  

Even these techniques are not suitable for our needs, since they do not permit fabrication 

of features less than 100nm.  Nevertheless, there are several other suitable lithography 

techniques.  The two most matured nanolithography technologies to date are electron-

beam lithography and x-ray lithography.   
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There are advantages and disadvantages to both x-ray and electron-beam lithography and 

there exist many arguments for using one versus the other.  With the use of x-ray 

lithography ( λ ≅ 1nm ), it is possible to pattern features on the order of 10-20nm.  On the 

other hand, electron-beam lithography can be used to reproducibly make features of 

about 60nm on a substrate.  The benefit of electron-beam lithography is that one can 

easily and quickly make modifications to a pattern without the need to make additional 

masks.  This was a big advantage for us, so we chose electron-beam lithography for the 

fabrication of our devices.   

 

We perform the lithography using the beam of a JEOL 6400 scanning-electron 

microscope (SEM) for transferring the pattern to a resist layer applied to our samples.  

For pattern generation, we use the Nanometer Pattern Generation System (NPGS) 

available from Joe Nabity Lithography Systems in Bozeman, MT.  This system uses a PC 

with a digital to analog converter card to generate two linear voltage signals.  These two 

voltage signals are fed to the input amplifiers of the X and Y scan coils of the SEM.  So 

we are able to precisely control the position of the beam with the PC supplying the 

control signals.  In addition, we use a third voltage signal from the PC to control the 

beam blanking circuit of the SEM to turn the beam off and on as desired. 

 

The pattern is exposed on a point by point basis.  Each pattern element written by our 

system is broken down into “simple” elements, such as boxes, circles and lines.  Every 

element is filled in by scanning the electron beam across its entire area.  Usually, the 

beam is scanned in a serpentine fashion to fill the area of each element.  The beam scan is 
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performed by stopping at points spaced apart by a predetermined distance, unblanked for 

a time period to give every point the proper electron dose, blanked, and then moved on to 

the next point.  Lines of minimal width are written with a single pass of the beam.  We 

were able to obtain features with a minimum linewidth of 60-70nm. 

 

The minimum point to point spacing of the digital-to-analog converter of the computer 

system is nominally 1.4nm with the field size of 90µm×90µm.  The beam diameter of the 

microscope is about 10nm.  This does not mean that we are able to write 10nm wide 

lines.  There are numerous factors that degrade the ultimate pattern resolution of the 

lithography system.  For example, focus drift limits the writing time to less than a few 

minutes, beyond which the surface of the substrate is no longer in the plane of optimal 

focus.   

 

The most important factor in electron-beam lithography that limits the pattern linewidth 

is electron backscattering.  As the electrons of the microscope beam impact the surface of 

the substrate, they scatter backwards into the resist.  This effect increases the effective 

area of exposure in the resist, thus increasing the minimum attainable feature size.  

Besides obtaining the minimum possible critical dimensions, we need to have a large 

undercut in our resist profile, as will be discussed in the following sections.  The 

backscattering process actually helps to increase to amount of undercut.  Our solution to 

this dilemma is to optimize lithography parameters for minimum linewidth, including 
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minimizing the level of backscattering, and to obtain the necessary amount of undercut 

through other methods, which will be described later in this chapter. 

 

The amount of backscattering generally decreases at higher accelerating voltages, so we 

use the highest voltage available on our electron-beam machine, 40kV.  The level of 

electron backscattering also depends on the substrate material.  We fabricated single-

electron transistors on a variety of substrates:  oxide coated silicon and GaAs wafers.  

Since the atomic weight of GaAs is higher than silicon, the lithography parameters for 

fabrication of our devices on these two substrates are different.  We used oxide coated 

silicon wafers for the development of the general methods for the fabrication of single-

electron transistors.  On the other hand, all the SET charge-sensing experiments were 

performed on GaAs heterostructures with a two dimensional electron gas under the 

surface.  This technique allowed us a great deal of flexibility in the type of structures that 

we used for our experiments.  The exact parameters of the complete fabrication process 

are given in Appendix A. 

2.2 Double-angle evaporation 

 

The structure of our single-electron transistor consists of a small metal island coupled to 

the source and drain electrodes through two metal-insulator-metal (MIM) tunnel 

junctions.  These tunnel junctions are essentially overlaps of two layers of metal with a 

thin dielectric layer in between.  The dielectric has to be thin to allow electrons to tunnel 
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through.  The tunneling rate defines the resistance of the tunnel junctions, and is 

exponentially dependent on the thickness of the dielectric.  Since the tunnel-junction 

resistance is a very important parameter in the operation of our devices, we need to have 

precise control over the dielectric barrier thickness. 

 

We chose to use aluminum for the fabrication of our devices because it readily forms a 

smooth, uniform surface oxide layer upon exposure to oxygen gas.  The aluminum oxide 

layer serves as the dielectric tunnel barrier.  There are other metals that can be used to 

form the dielectric tunnel barrier, such as Cr [2-3], but the oxidation of these materials is 

much more difficult than aluminum.  For example, the formation of a tunnel barrier in a 

Cr-Cr2O3-Cr single-electron transistor takes about 15 hours in an atmosphere of pure O2 

[2-4]. 

 

Our device structure requires two layers of metal.  Traditional planar techniques form 

multilayer structures in separate lithographic steps.  In our case, the bottom metal layer 

would be patterned, and then a second lithography would be performed and a second 

metal layer would be deposited.  The dielectric film would be created somewhere in 

between.  Unfortunately, this method is not applicable to our process, because if the first 

aluminum layer is introduced into the atmosphere after deposition, it is immediately 

coated with a thick Al2O3 layer which is impossible to control precisely.  So, as in the 

original work of Fulton and Dolan [2-5], we use the double-angle evaporation technique 

to fabricate the tunnel junctions.  This method allows us to deposit the bottom metal 

layer, the dielectric layer and the top metal layer in a single vacuum cycle.  The dielectric 
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tunnel barrier is deposited in vacuum under controlled conditions and then sealed with 

another metal layer on top.  This way, we are able to accurately control the thickness of 

the dielectric layer and therefore the resistance of the tunnel junctions. 

 

 

The double-angle evaporation process is depicted in Figure 1.  The aluminum layers are 

evaporated in an electron-beam evaporator, because its high degree of directionality gives 

us more control over the patterned metal.  The sample is placed inside the evaporator on 

a tilting stage which can be rotated around an axis with the use of a vacuum feedthrough.   

 

For the evaporation of the first layer, the sample is tilted at an angle of -10°.  Then an 

aluminum layer 30nm thick is deposited at a rate of 0.5nm/second.  This metal is shown 

in dark gray on the substrate surface in Figure 1.  After a 10 minute cooldown period, the 

1st evaporation         2nd evaporation

PMMA

MAA

 

Figure 1. Double-angle evaporation. 
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high vacuum valve is closed and 50-100 mTorr of oxygen gas is introduced into the 

sample chamber.  After the aluminum on the substrate is oxidized for 8-12 minutes, the 

oxygen is pumped out of the chamber.  For the second aluminum evaporation, the sample 

stage is tilted at +10° to the normal.  At this angle, an aluminum layer 350 angstroms 

thick is deposited.  This metal is shown as light gray in Figure 1.  As a result of the 

angled evaporations, an overlap is formed between the layers of metal formed in the first 

and second evaporations.  This overlap area is the tunnel junction.  Refer to the tunnel 

resistance data shown in Figure 7 for a 10 minute oxidation for an example of the 

dependence on the pressure of O2 gas during oxidation.  After the evaporations are 

completed, the sample is placed in acetone for “lift-off”.  The resist is dissolved in the 

acetone, leaving only the patterned metal on the substrate. 

 

The double-angle evaporation technique allows us to fabricate tunnel junctions with a 

great degree of control and reproducibility.  The only draw back to this method is that it 

inevitably results in undesired “shadow” features.  In our experiments, we had to 

circumvent problems caused by these “shadow” features.  One can imagine that in 

circuits requiring a high pattern density, the extra “shadows” could cause serious 

concern.  Hence, the double-angle evaporation method is not applicable to a general 

fabrication process, rather it is best suited for specific applications, such as ours. 
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2.3 Resist profile 

As a consequence of using a single lithography pattern to perform two evaporations at 

different angles, the pattern on the substrate surface occupies more area than the pattern 

on the surface of the resist.  To allow for the extra room at the substrate surface, the 

double-angle evaporation requires a large degree of undercut in the resist profile.  To 

achieve this, we use a bilayer resist structure, as shown in Figure 1.  The bottom layer of 

the resist is a copolymer of poly-methyl-methacrylate (91.5%) and poly-methacrylic acid 

(8.5%), (PMMA, PMAA), which is 450nm thick.  The top layer consists of 950,000 

molecular weight poly-methyl-methacrylate (PMMA) which is 50nm thick.  This layer 

serves to define the pattern of the evaporated metal on the substrate. 

 

It is very important to be able to precisely control the degree of undercut in the resist 

profile.  If the undercut is too small, then the sidewalls of the resist may become coated 

with metal after the angled evaporations.  If the undercut is too large, then it is impossible 

to place two long parallel lines close together, because the resist in the top layer 

separating the two lines can fall without support in the bottom layer.  We found several 

methods by which we are able to precisely control the undercut in the lower resist layer. 

 

The most dependable method of controlling the resist undercut is UV flood exposure of 

the bottom resist layer.  Immediately after spinning and baking, the bottom resist layer is 

uniformly exposed with 220nm UV radiation at a power density of 1mW/cm2 for a 

controlled period of time.  Afterwards, the top resist layer is applied.  After exposure, the 



 23

pattern is developed in a 2:3 solution of methyl-isobutyl ketone (MIBK) : isopropyl 

alcohol (IPA).  The samples are then immediately rinsed in IPA for 30 seconds.   

 

By using UV radiation to flood the bottom resist layer, we can precisely control the 

degree of undercut in the bottom layer.  Figure 2 shows scanning-electron micrographs of 

line profiles for 0, 2, 3, and 4 minutes of UV flood exposure.  The undercut, measured as 

the linewidth in the bottom resist layer, varies from 100nm for no UV exposure of the 

bottom resist layer to 550nm for a 4 minute UV exposure.  We selected the process 

parameters corresponding to an undercut of 350nm, achieved with a 3 minute exposure. 
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In addition to using UV flooding of the bottom resist layer to increase the undercut 

profile, we investigated several other methods.  Among other techniques, we 

experimented with using two subsequent developing steps.  After exposure, the samples 

are developed in the MIBK solution for 30 seconds.  Then, the pattern is further 

developed in a 1:4 solution of poly-glycol methyl ether acetate (PGMEA) : ethyl alcohol 

for 30 seconds.  The samples are then placed in isopropyl alcohol for 30 seconds.  The 

 

Figure 2. Effect of varying the UV exposure of the bottom resist layer on the cross-
sectional profile.  A 3 minute UV flood exposure is used in the SET fabrication 
process. 
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reason behind this procedure is that in the second development step, the PGMEA-based 

developer only dissolves the bottom MAA copolymer layer, leaving the top PMMA layer 

intact.  Figure 3 shows the effect of using this two step development procedure on the 

pattern profile.  The resist structure shown in Figure 3 is different from our usual resist 

structure.  The thickness of the lower MAA copolymer layer is only 200nm, rather than 

the usual 450nm, and the top PMMA resist layer is 50 thick, as before.  The effect of the 

PGMEA development is very convincing:  the undercut in the lower resist layer is 

increased by a factor of 2.  The increase of the linewidth in the top resist layer from 70nm 

to 100nm is due to resist damage in the SEM during inspection. 

 

Ultimately, we used the UV flooding method for the fabrication of single-electron 

transistors.  Our decision was based on some evidence of higher surface tension of the 

PGMEA-based developer.  The high surface tension can cause damage to the thin top 

resist layer during the drying process.  In fact, the high surface tension of the PGMEA-

based developer caused some areas of the top resist layer to collapse, because as a 

consequence of the large undercut in the pattern profile, some areas of the top resist layer 

are not supported. 
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Figure 3.  Effect of using a two-step development procedure.  a) 
Profile of a single-pass line written in a bilayer resist.  Development is 
performed in a 2:3 MIBK:IPA solution for 60s.  b) The sample is 
developed in the MIBK solution for 30s and then further developed in 
a 1:4 PGMEA:ethanol solution for 30s.  In both cases, the 
development process is completed by a 30s rinse in isopropanol. 



 27

The degree of undercut can be further increased by combining both techniques.  By using 

both UV flooding of the bottom resist layer and the two-step development technique, it is 

possible to achieve an extreme degree of undercut in the pattern profile.  Figure 4 shows 

a profile of a line that was fabricated by combining a 3 minute UV flood of the bottom 

MAA copolymer layer and the two-step development procedure. 

 

Since the above described procedures are performed in order to obtain an optimal pattern 

profile to be used for double-angle evaporation, let’s consider the effect of evaporating 

metal vapors on the surface of the organic polymer.  Obviously, extreme heat can cause 

severe damage to the pattern.  We have observed some evidence of resist flow under 

 

Figure 4.  Profile of a single-pass line obtained with a 3 minute UV flooding of 
the bottom resist layer and the two-step development procedure. 
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extreme thermal conditions during some evaporations of nickel, a refractive metal, in a 

thermal evaporator. 

 

We perform all our evaporations in an electron-beam evaporator, using a double-shutter 

system and a molten-metal source of limited area (~1cm2).  As a result, the effects of 

heating are minimal.  Nevertheless, there is some degradation of the resist pattern due to 

metal evaporation.  Figure 5 shows that the linewidth of the pattern decreases during 

evaporation, caused by the fact that the evaporated metal clusters do not stick 

immediately upon impact with the resist surface (i.e. less than 100% sticking 

probability), but scatter over a range of angles.  As a result, an overhang is formed on the 

edges of the upper layer resist.  This overhang increases with the thickness of the 

evaporated metal, limiting the aspect ratio of the evaporated metal to about one.  Hence, 

the metal thickness is limited to less than the minimum linewidth. 
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Figure 5.  Effect of evaporating metal on the pattern profile.  a) Profile 
of a single pass line in a bilayer resist.  b) Profile of a single pass line 
after evaporating 50nm of aluminum. 
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2.4 Tunnel junction resistance 

A tunnel junction made with the double-angle evaporation process described above is 

shown in Figure 6. 

 

This tunnel junction consists of an overlap of two layers of aluminum metal with a thin 

layer of dielectric (Al2O3) in between.  The resistance of these tunnel junctions is very 

repeatable, because the oxidation is performed in a well-controlled environment.  The 

dependence of the junction resistance on the oxygen pressure is best fit by a polynomial: 

 

Figure 6. Scanning-electron micrograph of a tunnel junction made with 
the double-angle evaporation process. 
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R P= × −( . )2 8 10 5 3 , 

where R is the tunnel junction resistance in MΩ, and P is the oxygen pressure in mTorr.  

Figure 7 shows the tunnel junction resistances obtained for a 10 minute oxidation.  The 

fact that the tunnel junction resistance has a power law dependence on the oxygen 

pressure, even though it is expected to have an exponential dependence on the barrier 

thickness could be explained by the fact that the barrier thickness does not grow linearly 

with the oxygen pressure. 

 

 

These data were obtained for tunnel junctions fabricated on an oxidized silicon substrate.  

The resistance of tunnel junctions fabricated on a GaAs surface is much less 

reproducible, varying by as much as a factor of 2 for otherwise identical conditions.  We 
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Figure 7. Dependence of the tunnel junction resistance on 
the oxygen pressure for a 10min oxidation.  These results are 
for samples made on a Si/SiO2 substrate. 
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attributed this unpredictable variation to the surface morphology of the GaAs substrate.  

The oxidized silicon surface is very smooth, whereas the GaAs surface can be quite 

rough and variable from sample to sample.  We have observed the surface of etched 

GaAs in a scanning-electron microscope, and measured the height variations to be as 

much as 10nm.  Such a rough substrate surface could cause the dielectric of the tunnel 

barriers to grow irregularly.   This would explain why on GaAs, the resistance of the 

tunnel junctions is more difficult to reproduce than on oxidized silicon. 
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Chapter 3 SET Operation 

3.1 Coulomb blockade 

The single-electron transistor (SET), as shown in Figure 8, consists of a small metallic 

island, referred to as the central island, coupled to source and drain electrodes through 

two small tunnel junctions.  The SET is extremely sensitive to charge on its central 

island.  A change of charge of a fraction of an electron in a near vicinity of the SET can 

cause significant changes in the current through the device.  In fact, the current through 

the SET goes through periodic oscillations with additions of single electrons on the 

central island.  The operation of the single-electron transistor is based on the principle of 

Drain

Gate

Tunnel junction

Source

Central
island

 

Figure 8.  The Single-Electron Transistor. 
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Coulomb blockade [3-1][3-2][3-3][3-4].  The transfer of charge through the device is 

limited by a potential barrier determined by the electrostatics of the system.  This 

electrostatic barrier arises from the discrete amount of energy it takes to increase the 

charge on a small metallic island by one electron. 

 

For a description of the physics governing the operation of the SET, let us consider the 

source-drain current through the device in terms of the transfer of individual electrons.  

To traverse the device from source to drain, the electrons must tunnel onto the center 

island through one of the tunnel junctions and then tunnel off through the other.  Thus, 

during this process, the charge on the central island must first increase by one electron, 

when an electron tunnels onto it, and then decrease to the original number of electrons 

when the electron tunnels off.   

 

Since the central island is small, its capacitance to the environment, CΣ , is small as well.  

Thus, the energy required to increase the charge on the capacitance of the central island 

by one electron, which is E e Cc = 2 2 Σ , can be quite significant.  To travel from source to 

drain, the electrons must overcome this charging energy barrier.   

 

If Ec is much larger than the thermal energy, k TB , then electrons cannot be thermally 

excited over this energy barrier.  Ideally, for a zero source-drain voltage bias, the current 

through the device is zero and the number of electrons on the central island is fixed.  Of 

course, in a real situation, the current is a small but finite, mainly due to cotunneling 

events [3-5] [3-6] and finite temperature effects.  In a cotunneling event, an electron 
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tunnels onto the island through one tunnel junction, and another electron tunnels off the 

island through the other tunnel junction.  In effect, a charge of one electron is transferred 

across the transistor and the number of electrons on the central island remains unchanged.  

These cotunneling events are fairly rare and constitute a small addition to the source-

drain current.   

 

The above description holds true if the resistance, RT, of both tunnel junctions satisfies 

the condition:  R RT Q>> , where R h e kQ = =2 259. Ω  is the resistance quantum.  In this 

case, the charge on the central island is well-defined.  In other words, the level 

broadening due to increased coupling to the environment of states localized on the central 

island is smaller than the level spacing between the states.  Otherwise, quantum 

fluctuations destroy the quantization of charge in Coulomb blockade, because the 

wavefunctions of the electrons would “leak” out into the leads, increasing the uncertainty 

in the location of the electrons.  Later in this thesis, we describe an experiment that 

probes the physics of Coulomb blockade when the tunnel barrier resistances approach RQ, 

and the degree of electron localization on the central island is substantially diminished. 

 

The condition E e C k Tc B= >>2 2 Σ  is satisfied for low temperatures and a low central 

island capacitance.  CΣ is primarily determined by the capacitances of the tunnel 

junctions, which in a typical SET have areas of about 60×60nm2, each with a capacitance 

of about 80aF (80×10-18 F).  Typically, CΣ is about 200aF, yielding a charging energy Ec 

of 0.4meV.  A scanning-electron micrograph of an aluminum SET fabricated with the 

double-angle evaporation method is shown in Figure 9.  This fabrication method is 
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described in Chapter 2.  The maximum operating temperature for a SET with these 

parameters is about 1K. 

 

The electrostatic barrier to the transfer of electrons through the device can be varied with 

an external gate voltage.  During the fabrication of the SET, we make a metal gate 

electrode in close proximity to the central island of the SET.  This gate electrode has a 

certain gate capacitance, Cg , to the central island.  A voltage applied to this gate 

electrode can raise and lower the height of the electrostatic barrier to the transfer of 

electrons through the device, resulting in a variation of the source-drain current.  

Actually, an SET can have several gate electrodes, all simultaneously affecting the 

current through the device, which can potentially lead to interesting applications. 

 

Figure 9.  A scanning-electron micrograph of an aluminum SET 
fabricated with the double-angle evaporation method. 



 37

 

By applying a voltage, Vg, to the gate electrode, we can induce charge on the gate 

capacitance to the central island, Cg, according to the expression: Q C Vg g g= .  The 

electrostatic energy on the central island is a function of the number of electrons on the 

central island, n: 

E
Q ne

Cn
g=

−( )2

2 Σ
 

Here, n is the integer number of electrons on the central island in excess of neutrality, and 

e is the charge of one electron.  When Q n eg = +( . )05 , the electrostatic energies 

corresponding to n and n+1 are equal.  At this exact point, the number of electrons on the 

SET central island can change between n and n+1 since the two states have an equal 

probability of occurrence.  As a result, finite current can flow through the device at these 

points in gate voltage.  As an electron tunnels onto the central island, the number of 

electrons on the central island shifts from n to n+1.  Then, as the electron tunnels off the 

central island through the other tunnel junction, the number of electrons on the island 

shifts back to n.  This process can be repeated indefinitely, resulting in a current through 

the device consisting of individual electron tunneling events.  The total charge on the 

tunnel junctions, Q, is Q Q neg= − .  When the number of electrons on the central island 

goes from n to n+1, Q is decreased by one electron. 
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Figure 10.  (a) The variation of the total charge on the tunnel 
junctions, Q, with the gate charge Qg for zero temperature.  At points 
where Qg=(n+0.5)e, the number of electrons on the central island goes 
from n to n+1.  (b) The source-drain current as a function of Qg.  The 
different curves correspond to temperatures of 0.02, 0.1, 0.3, 0.7, 1.0 
and 1.3K. 
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Figure 10a shows the variation of Q with Qg.  Q varies linearly with Qg, except at points 

where Qg=(n+0.5)e.  Here, the total charge on the tunnel junctions changes by -e (where 

e is the absolute value of the electron charge), because the number of electrons on the 

central island shifts from n to n+1.  At these points, the source-drain current displays a 

sharp peak, as shown in Figure 10b.  In the case of zero temperature, the current through 

the device is nonzero only at points where Q n eg = +( . )05 .  At higher temperatures, 

electrons can be excited on and off the central island at values of gate voltage in close 

proximity to these points, forming a peak.  At even higher temperatures, these peaks 

broaden and eventually wash out.  In our devices, this washing out occurs at temperatures 

of about 1-2K. 
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The Coulomb blockade principle can be further illustrated in the energy level diagrams in 

Figure 11.  Figure 11a depicts the situation where the source-drain voltage bias, Vds, is 

small and electrons cannot overcome the energy barrier,  resulting in a zero current.  

Here, current flows through the device only when Vg is adjusted to align the energy levels 

Ec

DrainIslandSource

eVds

Ec

eVds=Ec

b)

a) Coulomb
Blockade
condition

Onset of
conduction

 

Figure 11.  Energy diagrams of Coulomb blockade.  a) Coulomb blockade condition 
- current is zero.  b) The drain-source voltage bias is enough to overcome the 
charging energy barrier. 
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on the central island with the Fermi levels in the leads.  Figure 11b shows the situation 

where eV Eds c= . This is the source-drain conduction threshold, given a “maximally 

blockaded” SET with Q neg = , where n is an integer.  For larger Vds biases, current 

through the device is only limited by the resistances of the tunnel junctions. 

 

The manifestation of Coulomb blockade in the Ids-Vds characteristics of the single-

electron transistor is a region of zero current for a range of small drain-source voltage 

biases.  The maximum width of the Coulomb blockade region is equal to 2Ec/e.  Figure 

12 shows an example of the Ids-Vds relationship of the SET for several values of gate 

voltage.  Here, Ec is about 0.35meV.  The width of the Coulomb Blockade is reduced 

from 2Ec/e to 0 as Vg is increased from 0 to 2mV.  At this point, the charge induced on 

the central island by the gate is 0.5e.  
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Since the single electron charging levels on the middle electrode are evenly spaced by Ec, 

the effect of gate voltage is periodic.  The data shown in Figure 12 were obtained at a 

temperature of 50mK.  At higher temperatures, the Ids-Vds characteristic becomes more 

rounded.  We can detect no effects of Coulomb blockade for temperatures above 4K. 

 

Figure 13 shows the dependence of Ids on the gate voltage with increasing drain-source 

voltage bias.  The current oscillates periodically with the period corresponding to an 

electron being added to the central island.  This period corresponds to the gate voltage of:  

P
e

C
C
Cg

=
Σ

Σ .  The multiplier of 
C
Cg

Σ  is the lever arm necessary to convert the voltage 

applied to the gate electrode to the voltage that appears on the central island.  The 
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Figure 12.  Ids-Vds of the SET at T=50mK.  Vg=0, 1, 2 mV. 
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amplitude of the oscillation depends on the drain source voltage bias.  The largest 

amplitude occurs for V E eds c= = 0 35. mV .  This is consistent with Figure 12, where the 

largest change of Ids with gate voltage occurs at a Vds bias of 0.35mV. 

 

We usually use the SET in small signal mode.  This means that a small AC signal, Vac, is 

applied to the gate of the device.  The response of the SET current to this AC excitation 

can be expressed as: I AVSET ac= .  Here, A is the gain, which is proportional to the slope 

of the Ids-Vgs relationship, shown in Figure 13.  Clearly, A is not a linear function of the 

DC gate voltage, Vg.  The gain, A, of the SET can be Taylor expanded as: 

A V Vg g= + +α β 2 K  The condition of linearity states that α βV Vg g>> 2 .  So, the 

amplitude of the AC signal, Vac, must be maintained small, such that linearity holds at 

0 2 4 6 8
0

10

20

30

40

50

0.09

0.18

0.26

0.35mV

Vds=0.44mV

C
ur

re
nt

 (p
A

)

Gate Voltage (mV)
 

Figure 13.  Dependence of the drain-source current on the gate 
voltage.  The largest oscillation occurs for Vds=0.35mV. 
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least in regions of high gain.  The effect of gain and linearity of the SET amplifier in a 

charge measurement experiment will be shown in Chapter 5. 

 

3.2 High frequency operation of a Single-Electron Transistor 

amplifier 

Recently, there has been much research of electron levels in quantum dots.  Some of the 

experiments with quantum dots involve capacitance spectroscopy, in which the quantum 

dot signal is capacitively coupled to an amplifier [3-7]  that can detect single electrons 

tunneling on and off.  Rather than studying quantum dots through tunnel conductance [3-

8] [3-9], this type of measurement directly probes the charge on the quantum dot. 

 

The SET has the highest charge sensitivity of any electronic device.  But, a serious 

drawback is its high output impedance, which is normally above 100kΩ.  If used by 

itself, the SET would be required to drive long coaxial cables from the sample space in 

the cryostat to room temperature electronics.  These coaxial cables, which can be as long 

as 2-3 meters, present a large capacitance load (~1nF) to the output of the SET, and the 

response time of the output signal limits the measurement frequencies to less than a few 

kHz.  There are two disadvantages to this situation.  First, the noise level is significantly 

higher at low frequencies, so it is necessary to do a lot of signal averaging to obtain clean 

data.  Second, low frequencies are unsuitable for experiments on phenomena that are 

susceptible to signal degradation due to leakage or decay. 
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We have combined the charge sensitivity of a SET with the frequency response of a High 

Electron Mobility Transistor (HEMT) amplifier to create a circuit that can push the cutoff 

frequency of a single SET amplifier out to 1MHz.  A schematic of the circuit is shown in 

Figure 14.  The entire amplifier consists of two chips.  Chip 1 contains the SET and the 

device under study.  In our experiments, usually this device is a quantum dot.  Chip 2 

contains the HEMT and the biasing resistors.  Both chips are placed in the sample space 

in the cryostat and connections between the two chips are made with short 2-3mm 

bonding wires.  This way, the capacitance load on the output of the SET is limited by the 

sum of the input capacitance of the HEMT transistor, the capacitance of the bias resistor, 

RB, and the capacitance of the bonding wires.  This technique reduces the capacitance 

load of the SET from about one nanofarad to a few picofarads. 

 

VG VDS VB

100 kΩ

RB 10kΩ 0.5 µF

output

JB

SET
Cc

Charge signal
from quantum dot

Gate electrode

Balance signal
Cst

Chip 1 Chip 2

Cg HEMT

 

Figure 14.  High frequency SET charge amplifier circuit. 
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The HEMT amplifier on Chip 2 is in the usual AC common-source configuration which 

provides for good gain and frequency characteristics.  Since the source-drain voltage bias 

on the SET cannot be larger than a few millivolts, we use a 10kΩ resistor on the source 

of the HEMT to bias the DC gate-source voltage of the HEMT in a high gain regime.  At 

frequencies higher than 300 Hz, the 10kΩ resistor is shorted out by the 0.5µF capacitor, 

essentially grounding the source of the HEMT in the AC regime.  The resistor RB is 

selected to match the resistance of the SET to optimize signal throughput.  Its value is 

generally between 100kΩ and 1MΩ.   

 

For high gain, the gate-source voltage bias of the HEMT has to be about -0.2V.  Rather 

than grounding the source and applying a large negative voltage bias to the SET, we 

opted to use another biasing scheme.  The voltage across the SET has to be small, on the 

order of 1mV, so for the purpose of the discussion of the HEMT bias, it can be thought of 

as grounded.  The value of the HEMT drain bias voltage, VB, is usually about 5V.  We 

place a 10kΩ resistor on the HEMT source to raise its source voltage by about 0.2V.  

Under these conditions, the DC gate-source bias of the HEMT is about -0.2V.  The 0.5µF 

capacitor that is connected in parallel to the 10kΩ resistor presents a low impedance path 

in AC mode, so the source of the HEMT is grounded for AC analysis. 

 

The SET charge sensing stage is located on Chip 1.  The gate electrode is capacitively 

coupled to the central island of the SET through a capacitance Cg and to the charge signal 

through a capacitance Cc.  The capacitance of the gate electrode plays an important role 

in the performance of the SET amplifier. 
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In some charge sensing experiments, it is desirable to bias the voltage on the gate 

electrode.  Since the gate electrode is used to sense time varying AC charge signals, the 

DC voltage bias has to be set through a resistive component.  Unfortunately, typical thin-

film meander line resistors have a large stray capacitance.  Using such components would 

significantly reduce the charge signal that we are trying to measure.  In the following 

discussion, we explain this phenomenon and propose a solution to this problem. 

 

Lets denote the total capacitance of the gate electrode by Cgt.  This capacitance can be 

expressed in terms of the circuit components in Figure 14 as: Cgt=Cc+Cg+Cst+C’.  Here, 

C’ denotes all the stray capacitance that adds to the total capacitance of the gate 

electrode.  The capacitances Cc, Cg and Cst are all on the order of 40aF.  Let us also 

denote the amplitude of the charge signal by Qs.  The fraction of Qs that appears on the 

gate electrode is QsCc/Cgt.  The fraction of this charge that appears on the central island 

of the SET is further reduced by a factor of Cg/CΣ, where CΣ is the total capacitance of 

the SET central island.  This means that the fraction of the charge signal that appears on 

the central island of the SET is equal to  Qs(CcCg)/(CgtCΣ).  If the stray capacitance, C’, is 

large, the reduction factor (CcCg)/(CgtCΣ) could be quite small.  In order to keep this 

factor from completely destroying the signal, C’ must be minimized.  The largest 

contributor to C’ is the capacitance of JB, a tunnel junction that is used to bias the DC 

voltage on the gate electrode.  Using a conventional bias resistor in the place of the bias 

tunnel junction would reduce the signal level greatly, because such resistors have stray 

capacitances on the order of picofarads.  This means that the signal from the quantum dot 
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would be reduced by a factor of 106!  The tunnel junction is our solution to this problem, 

because it has a capacitance of only about 80aF.  With these values, the signal reduction 

factor (CcCg)/(CgtCΣ) would be about 0.04, which is reasonable. 

 

The resistance of junction JB has to be about 10GΩ.  Since the capacitance of the gate 

electrode is about 40aF, the charge leaks off the gate electrode at a characteristic RC 

decay time of 0.4µs.  This means that charge detection must be performed at a rate faster 

than 0.4MHz. We have used the HEMT-based high frequency amplifier stage at 

frequencies up to about 1MHz, above which the stainless-steel coaxial cables of the 

cryoprobe start to attenuate the AC signal. 

 

In order to eliminate the effect of distortion due to a background signal, it is possible to 

use a capacitance bridge technique.  A standard capacitor is connected to the gate 

electrode, denoted as Cst in Figure 14.  A balance signal is applied to this capacitor which 

is 90° out of phase with the charge signal.  Since the Cst is a known value, which is 

approximately 40aF, it is possible to deduce the value of the capacitance under test by 

comparing the relative amplitudes of the in-phase and quadrature components of the AC 

signal response of the SET. 

 

This charge detection scheme provides for high charge sensitivity at high frequencies.  In 

contrast with experiments with SET electrometers with the central island directly coupled 

to the device being measured [3-10] [3-11], this scheme has two series capacitances to 

the central island, Cc and Cg.  This way, the size of the SET Coulomb blockade region is 
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independent of the length of the gate wire and the size of the device being measured, 

which is a big advantage.  Another advantage of this scheme is the ability to bias the gate 

electrode with a tunnel junction.  This way, it is possible to always bias the SET in the 

high gain region, even if there is some time-dependent charge redistribution around the 

central island of the SET.   

 

Figure 15 shows an example of the response of the SET charge amplifier circuit at a 

frequency of 500kHz.  The source-drain voltage bias of the SET is swept, as a charge 

signal of 0.006e is applied to the gate electrode.  The effective noise bandwidth of the 

measurements is ENBW =
4
1
τ

, where τ is the lock-in time constant.  So, for τ = 10ms , 

ENBW = 25Hz .  The signal-to-noise ratio in Figure 15 is approximately 15, so the 

charge sensitivity of this measurement is 8 10 5× − e
Hz

.  This measurement was 

performed in a 3He cryostat with a base temperature of 300mK.  The charge sensitivity 

that we demonstrated with this experiments is comparable to recently published results 

with active amplifiers next to the SET in the sample chamber of the cryostat [3-12] [3-

13].  This high frequency charge sensitivity value is quite good, considering we obtained 

a charge sensitivity of 2 10 4× − e
Hz

 in an experiment without a high frequency output 

stage at a frequency of 10kHz and a temperature of 50mK.  The temperature of the 

experiment affects the charge sensitivity greatly, since the Coulomb blockade region of 

the SET becomes severely rounded at temperatures approaching 1K.  So, at 50 mK, the 

charge sensitivity of the high frequency setup could conceivably be as low as 
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1 10 5× − e
Hz

.  This predicted sensitivity is comparable to the charge sensitivity in an 

SET-based circuit that uses no active components, but rather a tuned LC resonator that 

effectively increases the frequency of operation to about 1GHz [3-14]. 

 

3.3 Superconducting Single-Electron Transistor 

Aluminum is a superconducting metal below a critical temperature of 1.18K [3-15] at 

zero magnetic field.  Since we use the aluminum SETs in experiments below this 

temperature, we examined the behavior of these devices in the superconducting state.   
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Figure 15.  Output of the charge amplifier circuit at a 
frequency of 500kHz.  T=300mK, AC amplitude on the 
gate=0.006 electrons, ENBW=25Hz. 
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The physics of the superconducting SET is rather complex and has been the subject of a 

great amount of research.  The interaction of the Josephson energy of each tunnel 

junction, which is a measure of coupling of the superconducting wave function Ψ across 

the tunnel barrier, and the charging energy gives rise to many interesting phenomena.  

For example, experimentalists have observed one- and two-electron periodicity in the 

dependence of the current through the device on the gate voltage [3-16], and this 

dependence has also been shown to be sensitive to the presence of an even or odd number 

of electrons on the central island [3-17].  But, since the goal of our research has been to 

develop techniques for utilizing the SET as a charge sensor, rather than studying the 

physics of the superconducting SET, we were mainly interested in the effect of the 

superconducting properties of the SET on our charge measurement experiments. 

 

The maximum voltage width of the zero current region of a superconducting SET is 

much larger than it is in the normal state.  This width is ( )4∆ + E ec , 

where ∆ = 018. meV  is the superconducting gap of aluminum [3-15], and Ec is the 

charging energy of the SET in the normal state.  As with bulk aluminum metal, the 

superconducting properties of the aluminum SET are suppressed by applying a magnetic 

field through the sample.  Figure 16 shows the dependence of the current-voltage 

characteristics of the single-electron transistor on the magnetic field penetrating the 

sample.  This measurement was performed at a temperature of 50mK, well below the 

critical temperature of aluminum. 



 52

It is clear that the maximum voltage width of the zero current region decreases from 

about 1mV for a zero magnetic field to about 0.35mV, its value in the normal state for a 

magnetic field of 0.3T.  Further increase of magnetic field has no effect on the 

characteristics of the SET.  It is interesting to point out that even though the critical field 

of bulk aluminum is only 0.0105T [3-15], above which the superconducting properties of 

the material are suppressed, we need to apply a magnetic field as large as 0.3T to 

suppress the superconducting behavior of the aluminum SET.  This can possibly be 

attributed to the fact that in the fabrication of the SET, we use thin films of aluminum, 

which could possibly have different superconducting properties than bulk material.  
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Figure 16.  The dependence of the current-voltage characteristics of the SET on 
magnetic field.  T=50mK.  The magnetic field, B, is increased from 0T to 0.3T. 
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Nevertheless, the increased critical field does not affect the application of the SET to the 

charge sensing measurements greatly, since we use magnetic fields as high as 10-12T in 

our experiments on quantum dots. 

 

Figure 17 shows the dependence of the current-voltage characteristics of a 

superconducting aluminum SET on the gate voltage.  This measurement was also 

performed at a temperature of 50mK.  In contrast with the SET in the normal state, a 

large portion of the zero-current region in the current-voltage characteristics of the SET 

remains virtually unchanged as the gate voltage is varied.  It should be pointed out that 

the larger maximum voltage width of the zero current region and the sharp changes in the 

source-drain current at the onset of conduction (Vds ≅ 1mV ) increases the charge 
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Figure 17.  The dependence of the current-voltage characteristics of 
a superconducting aluminum SET on the gate voltage.  T=50mK, 
B=0T, Vg is varied from 0 to 1mV. 
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sensitivity of the SET in the superconducting state.  We utilized the increased charge 

sensitivity of the superconducting SET in some charge sensing experiments. 
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Chapter 4 Floating Gate 

 

 

We use a SET-based circuit to measure the chemical potential fluctuations of a two-

dimensional electron gas (2DEG).  The schematic of the experiment is shown in Figure 

18.  We use a GaAs/AlGaAs heterostructure with a 2DEG 100nm below the surface and 

etch a mesa to isolate the 2DEG to a section of the sample.  Ohmic contacts allow metal 

leads to make good electrical contact to the 2DEG.  We fabricate an SET to the side of 

the mesa, with an array of 5 tunnel junctions connecting to the gate electrode to permit 

DC voltage biasing on the gate electrode.  The gate electrode capacitively couples to the 

central island of the SET and also extends over the top of the mesa a distance of about 1 

B
Gate

2DEG

Contact to 2DEG

SET

Junction
array

 

Figure 18.  Schematic of the floating gate experiment. 



 56

micron.  The gate electrode, thereby capacitively couples the SET to the 2DEG. The 

tunnel junction array would permit us to vary the electron concentration in the 2DEG 

directly under the gate lead.  Unfortunately, we had a break in the wire connecting the 

junction array with the outside world.  This prohibited application of a potential to the 

gate through the junction array.  This essentially results in the gate electrode being 

connected to a floating charge reservoir through an array of 5 tunnel junctions. 

 

4.1 Electron hopping 

We apply a DC voltage to the 2DEG and a small (160µV, 17Hz) AC excitation.  The 

source-drain voltage of the SET is biased to ensure optimal gain.  The SET current is 

measured using a current lock-in amplifier that is referenced to the AC excitation signal.  

The experimental data shown in Figure 19 were obtained in two different cooldowns..   

 

The measurements for each cooldown have very different characteristics.  This arises 

because the 2DEG is coupled to the central island of the SET in two different ways.  
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Figure 19. Response of the SET to variation in the DC potential of the 2DEG 
a) and b) are different cooldowns. 
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First, the 50 mV periodicity in Figure 19a, is caused by capacitance coupling the 2DEG 

directly to the central island of the SET.  This capacitance gives rise to a periodicity of 

about 75 mV in Figure 19b.  This feature will be explained further below.  Second, the 

2DEG is capacitively coupled to the array of tunnel junctions, which is in turn 

capacitively coupled to the SET central island.  When the DC potential of the 2DEG is 

varied, capacitive coupling to the array causes electrons to hop from island to island in 

the array.  The SET senses this electron hopping, and we believe this is the origin of the 

signal that we observe with the periodicity of 3 mV which is present in both Figure 19a 

and Figure 19b.   

 

The fact that the amplitude of the electron hopping signal is much bigger in Figure 19b 

than in Figure 19a can be explained by the fact that the electron concentration in the 

2DEG can vary quite substantially between different cooldowns if the potential on the 

surface gate is not held fixed.  In the case of Figure 19b, the 2DEG is fully depleted 

under the gate.  In this caes, the capacitance between the gate electrode and the 2DEG is 

very small.  Indeed, the capacitance between the gate electrode and the central island of 

the SET represents a major fraction of the total capacitance of the gate electrode.  This 

means that most of the signal caused by electron hopping in the tunnel junction array 

appears at the central island of the SET, and the resulting current signal is quite large.   
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4.2 Magnetic field dependence 

We have measured the variation of the chemical potential in the 2DEG with the magnetic 

field.  We applied a magnetic field perpendicular to the 2DEG and measured the AC 

current through the SET, while keeping all the DC biases constant.  The changes in 

chemical potential in the 2DEG cause the charge on the floating gate to shift.  This 

occurs because the floating gate is capacitively coupled to the 2DEG.  Since the SET is 

sensitive to any variations of charge in the proximity of the central island, the current 

through the device reflects any changes in the chemical potential.  The data from this 

experiment are shown in Figure 20.   
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Figure 20.  Sweep of magnetic field perpendicular to the 2DEG.  B is 
swept at a rate of 1T/min. 
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Large features occur at points in the magnetic field that correspond to integer filling 

factors in the 2DEG.  The 2DEG Fermi level changes abruptly when the magnetic field is 

swept through these values, and this leads to changes in the charge under the gate. This 

effect is very similar to previous results of floating gate measurements on samples 

10,000,000 times larger in size [4-1].  The  sharp peaks arise from eddy currents set-up in 

the 2DEG by the changing magnetic field.  The direction of magnetic field sweep affects 

the sign of these peaks.  Data taken by sweeping the magnetic field at much slower rates 

do not display the peaks.  Rather, the SET output reflects the abrupt transition of the 

Fermi level as each successive Landau level depopulates.  This observation has also been 

made elsewhere. [4-2] 

 

 



 60

Chapter 5 Quantum Fluctuations 

5.1 Introduction 

In classical physics, a puddle of electrons holds a discrete and measurable number of 

electrons. Quantum mechanics instead dictates that the probability for an electron to be in 

a localized state on the puddle depends on the coupling strength to the environment.  For 

many systems in which a single state is coupled to a continuum, this coupling produces a 

“lifetime broadening” of energy levels.  The Heisenberg Uncertainty Principle  

∆ ∆E τ ≥ h  

states that it is impossible to have precise information both about the energy, E, of a 

particle and the time, τ , that the particle spends at that energy.  As the coupling between 

a localized state to the environment increases, the lifetime of a particle on the state 

shortens.  As a result, the uncertainty in the energy level increases.  The precise shape of 

the broadened energy distribution depends on the system and the type of coupling. 

 

Atomic spectra display a characteristic Lorentzian lineshape broadening [5-1].  In 

analogy with atomic spectroscopy, several experiments have demonstrated the capability 

of precisely measuring the energies to add electrons to quantum dots [5-2][5-3][5-4].  In 

contrast to atomic physics, the lineshape of quantum dot levels originates essentially in a 

many-body interaction between electrons in the dot and the macroscopic environment. 

 



 61

As in the previous discussion of single-electron transistors, the physics of quantum dots 

is primarily determined by Coulomb blockade in the many-electron regime.  As the 

tunnel barrier conductance, G, between the quantum dot and the macroscopic leads is 

increased above 
2 2e
h

, charge in the dot is no longer quantized and the Coulomb 

blockade is destroyed.  This process has been attributed to quantum charge fluctuations 

between the dot and the environment [5-5].  A thorough physical description of this effect 

has only been recently proposed in the nearly closed regime G
e
h

<<
2

 [5-6][5-7] and the 

nearly open regime 
2 2 2e
h

G
e
h

− <<  [5-8].  

 

Experiments measuring the charge or the capacitance of a dot provide the most direct 

information about charge fluctuations and the effect of the dot-environment interaction 

on the charge states of the dot.  However, transport measurements have been the first to 

address the issue of dot-environment coupling. In one of the first studies, Foxman et. al. 

[5-9] examined the lineshape of conductance peaks with increasing coupling of the dot to 

the leads and found good agreement with Lorentzian broadening.  To analyze the 

charging lineshapes in the dot for a broad range of coupling strengths, conductance 

measurements are poorly suited, being complicated by other processes such as 

cotunneling [5-10] and Kondo coupling [5-11]. 

 

Previous experiments have addressed the issue of charging lineshapes.  Experimenters 

employed a semiconductor electrometer [5-12] to observe the effect of charge 
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fluctuations. They modeled their results by a reduction of the charging energy with 

increasing coupling.  In another experiment, the effect of tunnel  barrier conductance on 

Coulomb blockade was studied through peak splitting of double dots [5-13].  In this case, 

the spacing between double-dot peaks can be predicted with a similar formalism as we 

use in our lineshape analysis [5-14]. 

 

We have developed an experiment which probes the capacitance lineshape of a quantum 

dot with unprecedented sensitivity. We find that the lineshapes deviate substantially from 

previously employed fitting forms [5-9][5-12] and are best described for all coupling 

strengths by the theory developed recently by Matveev [5-7][5-8] 

 

5.2 Experimental setup 

We measure the capacitance lineshapes of a quantum dot with only one contact to a 

charge reservoir.  The quantum dot is electrostatically defined in a two-dimensional 

electron gas (2DEG) of a AlGaAs/GaAs heterostructure. The 2DEG is about 120nm 

below the surface with a carrier concentration of 1 1011× cm-2 .  Measurements were 

performed on six different samples, each yielding very similar results, and here we 

present detailed data from two of them.  Figure 21 shows a micrograph of the structure. 

The estimated area, A, of the quantum dot is about 0.5µm2, which corresponds to a single 

particle energy level spacing of ε
ρ

π

= =










=
1 1

05
2
2

7
2

2

A E m( )
.

*

µ
µ

m
eV

h
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Figure 21.  Micrograph of the measurement setup.  The leads are made of 
aluminum by shadow evaporation.  The area of the quantum dot is 
approximately 0.5µm2. 
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Figure 22.  (a)  Example of drain-source current-voltage characteristics 
of a single-electron transistor at a refrigerator temperature of 50mK 
shown for three values of gate voltage CgsVg=eNSET=0, 0.25 and 0.5 
electrons.  The arrow shows the drain voltage bias for optimal gain.   
(b) Dependence on gate voltage of the SET current with transparent 
quantum dot tunnel barriers for 5 different drain-source voltage 
biases.  Maximum peak-to valley modulation amplitude is at SET 
Vds=Ec/e. 
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The charge on the quantum dot is measured with a single-electron transistor (SET) with 

extremely high sensitivity [5-15].  The metal SET is fabricated [5-16] with Al-Al2O3-Al 

tunnel junctions using the standard shadow-evaporation  

method [5-17].  To maximize the sensitivity to the quantum dot charge, we incorporate 

the SET directly into one of the leads defining the dot.  

 

Figure 22a shows the drain-source current-voltage relationship of the SET.  It changes 

cyclically with the charge induced on the central island of the SET.  The dependence of 

the current on the SET central island charge is shown in Figure 22b.  For optimal charge 

sensitivity of the SET, we set the drain-source voltage at the onset of conduction for the 

maximum Coulomb blockade condition [5-18], as shown by the arrow in Figure 22a.  For 

the sample primarily discussed in this chapter, we achieve a sensitivity of 

12 10 3. × − e
Hz

 to the quantum dot charge, whereas the sensitivity of the SET to charge 

on the central island is 6 10 5× − e
Hz

.   
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Figure 23.  (a) Schematic of the sample used for the quantum fluctuations 
measurements.  (b) Equivalent circuit of the sample with some of the physical 
quantities in the measurement setup. 
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Through application of a DC voltage, Vg, to the lead marked “gate” in Figure 21, charge 

can be drawn onto the dot as eN C Vgd g= , where Cgd is the gate-dot capacitance as shown 

in the schematic in Figure 23.  However, for zero temperature and for high tunneling 

barriers separating the dot from the leads, the charge on the quantum dot is quantized and 

can only change from n to n+1 around points in gate voltage, where N n= + 05. .  The 

measured quantum dot capacitance lineshape is C e
n

Vmeas
g

=
∂
∂

, where n  is the average 

number of electrons on the dot. 

 

5.3 Measurement 

The capacitance lineshape is measured by applying a small ac excitation (40µV rms, 

1kHz) to the gate. This signal modulates the charge on the quantum dot by an amount 

that is a function of N and the coupling strength.  The small ac modulation of the 

quantum dot charge induces ac charge on the SET central island resulting in a current 

through the SET at the excitation frequency.  Examples of measured SET response as Vg 

is swept are shown in Figure 24 for three different tunnel coupling strengths.  The upper 

trace is obtained for G
e
h

= 165
2

. , where n  deviates only slightly from N and the 

electrostatic potentials in the dot and the leads are nearly equal.  A prominent feature of 

this curve is an oscillation with a period of 94mV.  This period arises due to an addition 

of one  
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electron to the SET central island through a direct capacitance Cgs = 17. aF  to the gate, 

modulating the gain of the SET.  
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Figure 24.  SET signal vs. gate voltage for three values of point contact 
conductance.  Top to bottom:  G=1.65, 1.32 and 0.05e2/h. 
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The bottom trace in Figure 24 is obtained for G
e
h

= 0 05
2

. .  Here, the charge on the dot is 

well quantized and can only change in close proximity to points where N n= + 05. .  

These points correspond to the sharp peaks in the trace, spaced with a mean period of 

6.3mV, yielding a gate-dot capacitance of Cgd = 25aF .  Notice that the large-period 

background oscillation has a larger amplitude compared with the upper traces in Figure 

24.   

 

Between the peaks, the dot potential is effectively floating; charge cannot enter the dot 

from the reservoir to screen the ac gate potential.  Thus, more charge is induced on the 

SET in response to the ac excitation on the gate because the ac coupling from the gate to 

the SET is augmented by a factor of 
C C

C
gd ds

Σ
.  Here, Cds is the quantum dot-SET central 

island capacitance and CΣ is the total capacitance of the quantum dot.  

 

In general, the charge response on the SET central island, dQSET, to the ac excitation on 

the gate, dVg, can be expressed as: 

( )d dQ C C
C
C

C VSET gd meas
ds

gs g= − +








Σ
                                              (1) 

 

As our SET operates in the linear response regime, the current through the SET directly 

reflects dQSET.  Linear response is ensured because the ratio of Cds to the total capacitance 
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of the SET central island is about 0.05.  Therefore, a change of charge of one electron in 

the quantum dot only induces 
1
20

th

 of an electron on the SET.  Moreover, we obtain our 

capacitance lineshapes at maximal gains of SET where this small induced charge has 

minimal effect on the SET gain.  The reverse effect of the SET on the quantum dot 

charge is also very small.  The ratio 
C
C

ds

Σ
 is approximately 0.06, producing negligible 

feedback.  Also, the charge on the SET central island is weakly quantized since a source-

drain voltage is applied to the SET, which is V
E
eds

c= , where Ec is the charging energy 

of the SET central island.  Thus, the number of electrons on the central island of the SET 

fluctuates rapidly.  Using equation (1), we extract the quantum dot capacitance 

lineshapes, Cmeas(Vg), from the raw data as a function of the tunnel barrier conductance.   



 71

 

Figure 25 graphically shows the process of extracting the quantum dot peaks from the 

SET signal.  The top curve is an example of the current through the SET for a relatively 

small point contact conductance.  The middle curve is the computed gain of the SET as a 

function of the gate voltage.  By dividing the SET signal by the SET gain, we obtain the 

true signal due to the quantum dot.  The regions in the quantum dot signal corresponding 

to the zero crossings of the SET gain have been removed.  This was done to reduce the 

large fluctuations in the resulting quantum dot signal due to the amplification of noise in 

the original SET signal when it is divided by zero.  Notice that the lineshapes of the 
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Figure 25.  Process of isolation of quantum dot capacitance peaks from the 
variation of the SET gain with gate voltage.  Top: SET signal for point contact 
conductance of approximately 0.01e2/h.  Middle:  computed SET gain.  Bottom: 
extracted quantum dot signal. 
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quantum dot peaks that appear outside the maximal gain regions are slightly distorted.  

As discussed in Chapter 3, the SET gain is inherently nonlinear.  The response of the 

SET current to this AC excitation can be expressed as: I AVSET ac= .  Here, A is the gain, 

which is proportional to the slope of the Ids-Vgs relationship.  Clearly, A is not a linear 

function of the DC gate voltage, Vg.  The gain, A, of the SET can be Taylor expanded as: 

A V Vg g= + +α β 2 K  The condition of linearity states that α βV Vg g>> 2 .  So, we aim to 

utilize the SET in a linear regime by using the smallest possible amplitude for the AC 

excitation voltage.  On the other hand, reducing the amplitude of the AC excitation 

decreases the signal-to-noise ratio.  So, we maintain the amplitude of the AC signal, Vac, 

such that linearity holds at least in regions of high gain.  Therefore, in our lineshape 

analysis, we use only the undistorted peaks centered directly at points of maximum gain 

of the SET.  These peaks are pointed out by arrows in Figure 25. 

 

5.4 Capacitance lineshape results 

For high tunneling barriers, the lineshape of the quantum dot capacitance peak as a 

function of gate voltage, Cmeas(Vg), is very well described by a derivative of the Fermi 

function:  C C
C
C Tmeas

gd=


















−

cosh
eV

2k
g

BΣ

2

, where Vg varies from -e/2Cgd to +e/2Cgd.  The 

full width at half maximum of these peaks in gate voltage is:  ( )FWHM
e

C
C

k T
gd

B=
1

352Σ . .  

After extracting the quantum dot capacitance peaks from the SET signal, we determine 

the total capacitance of the quantum dot, CΣ, from the slope of the temperature 
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dependence of the linewidth for high tunneling barriers, which is 352.
C
C

k
egd

BΣ .  Figure 26 

shows the dependence of the full width at half maximum of a quantum dot capacitance 

peak on the refrigerator temperature.  At high temperatures, the dependence of the full 

width at half maximum is linear.  The slope of the dependence is 4.13mV/K, yielding a 

total capacitance of CΣ = 340aF , with a charging energy of U
e
C

= =
2

2
0 23

Σ
. meV .  For 

low temperatures, the dependence is relatively flat, because the electrons in the sample 

generally cannot be cooled to the base refrigerator temperature.  Stray electromagnetic 

radiation, room temperature heating propagating down the coaxial cables, current through 

the transistor and various other phenomena increase the electron temperature above the 

refrigerator temperature.  The crossover from the linear temperature dependence to the 

saturation region occurs at a refrigerator temperature of approximately 0.2K.   

 

By fitting the capacitance peaks with the highest tunneling barriers with a Fermi function 

derivative, we obtained a finite electron temperature of about 0.13K.  In our temperature 

dependence measurements we obtained a saturation temperature higher than the 

temperature from the Fermi function fit.  This can be explained by the fact that the 

capacitance peak which was used in the temperature dependence measurements was not 

obtained  for the highest tunnel barriers, and there was some residual broadening from 

the increased coupling between the dot and the reservoir.  This is evident in the 

extrapolation of the fit in the linear regime to zero temperature, which corresponds to a 

finite peak width  of about 0.55mV.  For the highest tunneling barriers, this width should 

be zero. 
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To deplete the electrons underneath the metal leads, it is necessary to apply a negative 

DC voltage to the leads relative to the two-dimensional electron gas.  To avoid applying 

large DC voltages to the highly delicate single-electron transistor, we apply a positive 

DC voltage of +0.57V to the 2DEG.  In the following discussion, we will refer to point 

contact voltages in terms of values relative to the 2DEG.  During the measurement of the 

capacitance lineshapes, point contact 2 is completely pinched off by setting the bias on 

the defining lead at − 0 745. V  relative to the 2DEG.  This isolates the effect of the 
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Figure 26.  Temperature dependence of the full width at half maximum (FWHM) 
of a capacitance peak obtained with high tunneling barriers.  The slope of the 

dependence is: slope = =352 413. .
C
C

k
egd

BΣ mV/K.  The inset shows the peak for a 

temperature of T=0.05K with the value of the full width at half maximum denoted 
by arrows. 
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conductance of point contact 1 on the capacitance lineshape of the quantum dot.  This is 

done because of the high electrostatic coupling between point contacts 1 and 2.  For 

example, changing the voltage on point contact 1 not only varies the conductance through 

contact 1, but also significantly alters the conductance of contact 2.  The drawback of 

performing the measurement in this manner is that it is impossible to measure the 

capacitance lineshape and the conductance simultaneously.  To determine the 

conductance of contact 1 in this regime, we perform the following procedure.  The 

conductance of contact 1 is measured with the voltage on point contact 2 set to zero volts 

relative to the 2DEG, so it is completely open.  To account for the change in conductance 

of point contact 1 due to the electrostatic coupling from contact 2,  we monitor the shift 

of conductance plateaus of contact 1 as 2 is being closed.  This procedure allows us to 

extrapolate G, the conductance of contact 1, to the regime of the capacitance 

measurement.  Figure 27 shows that we were able to observe a shift in the conductance of 

point contact 1 by changing the voltage on point contact 2 from 0 to -0.186V relative to 

the 2DEG.  By extrapolating this shift to the value of -0.745V on point contact 2, we 

obtain the expected conductance of point contact 1 during the measurement of 

capacitance lineshapes.  Actually, by slightly depleting the 2DEG underneath point 

contact 2, we inevitably introduce a series resistance with the tunnel barrier of point 

contact 1.  To determine the actual conductance of point contact 1, we account for this 

series resistance by subtracting it from the measurement.  As the series resistance due to 

point contact 2 increases, its effect is more difficult to subtract.  So, we are forced to use 

the shift from point contact 2 voltage bias of 0V to -0.186, and extrapolate it to the point 

contact 2 voltage bias of -0.745.  This is a rather large extrapolation, but it turns out to be 
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a fairly good one, judging from the comparison of the expected values of tunnel barrier 

conductance to the values extracted from the calculated capacitance lineshape fits, as 

shown in Figure 34. 
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Figure 27.  Shift in the conductance of point contact 1 due to the voltage on 
point contact 2.  The curves for contact 2 voltages of 0 and -0.186V relative 
to the 2DEG are measured.  The curve for contact 2 voltage of -0.745V is the 
curve with the extrapolated shift from the other two curves. 
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Figure 28.  (a) Five capacitance peaks with varying point contact 
conductance.  G=0.010, 0.67, 1.09, 1.50 and 1.81 e2/h.  (b) The variation of 
the number of electrons, n, on the quantum dot with the gate charge, N, 
for different point contact conductance.  Each trace corresponds to the 
integral of the curve in (a). 
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Figure 28a shows the evolution of the capacitance lineshape with increased coupling 

strength.  The nominal values of G are:  0.010, 0.67, 1.09, 1.50 and 181
2

.
e
h

.  It is clear 

that as G increases and approaches 
2 2e
h

, the capacitance peaks broaden and the Coulomb 

blockade oscillations diminish and disappear.   

In Figure 28b, we show the number of electrons on the quantum dot, n, as a function of 

the gate charge, N.  Each curve in Figure 28b corresponds to an integral of the curve in 

Figure 28a.  For each trace of n, the sum of one electron is conserved.  As the point 

contact conductance, G, increases toward 2e2/h, n deviates from the limit of a sharp step 

and approaches a straight line with a slope of 1.  Below, we discuss the lineshapes of 

different quantum dot capacitance peaks in various coupling regimes: very weak, weak 

and strong. 
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In the very weak coupling regime, the shape of the capacitance peak is determined simply 

by thermal broadening.  Figure 29 shows good agreement between a peak measured with 

G
e
h

= 0 010
2

.  and a derivative of the Fermi-Dirac function for a temperature of T=0.13K.  

There is a slight difference between the fit and our data at the corners of the curve, for 

N=0.3 and 0.7e.  We propose that this deviation is due to a slight nonlinearity of the SET 

amplifier.  The amplifier nonlinearity is caused by a deviation from a straight line of the 

SET gain within the amplitude of the AC excitation, which is 40µV.  We have modeled 
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Figure 29.  Filled circles: capacitance peak obtained with a point contact 
conductance of G=0.010e2/h.  Straight line: Fermi-Dirac function derivative with 
T=0.13K. 
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our amplifier and used a Taylor expansion of the transfer function to determine the 

significance of the higher order terms in the gain.  It turns out that the coefficient of the 

second order term in the expansion is about 15 times smaller than the first order term.  

This is a very small contribution, but it could explain the slight deviation from the fit. 

 

For larger tunnel barrier conductance, the capacitance lineshape changes.  In Figure 30a, 

b, c and d, we plot with open circles capacitance peaks that we obtained for nominal 

values of G=0.67, 1.09, 1.50 and 181
2

.
e
h

. We compared our capacitance peaks with 

expressions that have been previously used to fit conductance peaks.  For example, 

Lorentzian lifetime broadening has been considered [5-9], as in equation (2), for 

characterizing the charge smearing effects.   

( )
( ) ( )

C A
E
k T eV C C EB

g gd

=






 ⊗

+ +
−cosh 2

2 22
2

2

Γ

Γ Σ

π
                     (2) 
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Figure 30.  Capacitance peaks for increased tunnel coupling.  (a) Open circles:  
data for G=0.67e2/h, solid line: fit to weak coupling theory (wc) with 
Gwc=0.55e2/h, dotted line: Lorentzian with Γ=0.08U, dashed line: derivative of 
the Fermi function with U*=0.68U.    (b) Open circles: data for G=1.09e2/h, solid 
line: wc fit with Gwc=1.08e2/h, dotted line: Lorentzian with Γ=0.26U, dashed line: 
derivative of the Fermi function with U*=0.40U.  Closed circles: data for 
G=1.09e2/h offset by 0.35 vertically, dash-dot line: strong coupling theory (sc) fit 
with Gsc=1.08e2/h.  (c) Open circles: data for G=1.50e2/h, solid line: sc fit with 
Gsc=1.41e2/h, dotted line: Lorentzian with Γ=0.36U, dashed line: derivative of 
the Fermi function with U*=0.33U.  (d) Open circles: data for G=1.81e2/h, solid 
line: sc fit with Gsc=1.90e2/h, crosses: Lorentzian with Γ=1.0U. 
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In Figure 30a, the lower plot of Figure 30b, Figure 30c and d, we plot Lorentzian-

broadened Fermi peaks with energy level widths Γ=0.08, 0.26, 0.36 and 1.0U.  The 

lineshapes show significant deviations from the data.  We have obtained these values by 

using a least-squares fit to our data.  The largest mismatch between our data and this 

calculation is at the valleys of the peaks. 

 

Previous measurements of charge fluctuations used a renormalized quantum dot charging 

energy U* to account for peaks broadened with a finite tunnel barrier conductance [5-12].  

In Figure 30a, b and c, we plot derivatives of the Fermi function with U*=0.68, 0.40 and 

0.33U for a temperature of 130mK.  The mismatch between our data and these peaks is 

also largest.  This mismatch is even greater than with the Lorentzian-broadened peaks. 

 

Finally, we compared our experimental results to the theoretical treatment developed by 

Matveev [5-7][5-8].  The problem of interaction between the dot and the leads was solved 

in the limits of weak [5-6][5-7] and strong [5-8] coupling using either transmission or 

reflection of the tunnel barrier as a small parameter in perturbation theory.  In both limits, 

the physics of charge fluctuations is related to spin fluctuations in the Kondo problem.  

Here, instead of the degeneracy of the two-spin states, there is a degeneracy between the 

dot states with n and n+1 electrons.  Similarly to the Kondo effect [5-19], the charge 

displays a logarithmic divergence around these degeneracy points at very low 

temperatures [5-7] [5-8].  As a result, the predicted capacitance lineshape has more 
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weight around the half integer values of N in comparison with other theoretical 

treatments. 

 

For weak coupling, in the range of G
e
hwc <<

2 2

, Matveev determines the peak shape by 

treating the tunnel coupling between the quantum dot and the reservoir as a perturbation.  

He considers the virtual tunneling events of an electron from an energy state El in the 

lead to an energy state Ed in the dot and back to the reservoir.  The capacitance lineshape 

is calculated by summing the total contribution from coupling between all possible states 

in the dot and the lead.  Figure 31 shows a schematic of this process.  This second order 

correction to the charge can be written as [5-6][5-7]: 

Q aeG
h

e
N
Nwc= 





+
−4

05
052 2π

ln
.
.

                                               (3) 

The capacitance peak can be obtained by differentiating the charge: 

El

Ed

dot lead

|tld|2

 

Figure 31.  Schematic of the weak coupling perturbation theory.  Tunnel 
coupling between states Ed in the dot and El in the lead is considered.  The 
capacitance lineshape is calculated by summing the total contribution from 
coupling between all possible states in the dot and the lead. 
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The above expression is derived in the interval -0.5 < N < 0.5 and in the theory [5-7], 

a=1..  Near the peak centers, where N = ±05. , this expression diverges.  Therefore, 

Matveev’s theory for non-zero temperatures yields an expression for the quantum dot 

charge with a Fermi-Dirac component and a correction that is linearly dependent on Gwc 

[5-20]: 
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Here, u
E

k TB
=  and Gwc is the value obtained from fitting the weak coupling expression 

in the valleys of the peaks.  The capacitance lineshape can be obtained from this 

expression by taking the derivative of the charge: C
k T

Q

B
=

β d
du

.  Here, β is the lever arm: 

β =
C
Cgd

Σ . 

 

In Figure 30a and the lower plot of Figure 30b, along with our data, we show capacitance 

peaks obtained with the weak tunneling perturbation theory for tunnel barrier 

conductances of Gwc=0.55 and 1.08e2/h.  These peaks are in excellent agreement with our 

data that was obtained with tunnel barrier conductances of G=0.67 and 1.09e2/h.  We 
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found that on average, Gwc corresponds to G if a=4, rather than 1, as in the theory.  A 

similar discrepancy was found elsewhere [5-21], but its cause is not known at this time. 

 

The weak coupling theory is derived for G
e
hwc <<

2 2

, but it works surprisingly well for 

capacitance peaks with a tunnel barrier conductance as high as 1.09e2/h, as shown in 

Figure 30b.  For higher values of G, it is necessary to use a different formulation. 

 

In the limit of high G, where it is just below 2 2e h , the quantum dot can be treated as a 

small charge perturbation on the two-dimensional Fermi liquid.  In the spinless case, this 

perturbation creates Friedel oscillations, forming a charge density wave in space of the 

form ρ φ( ) cos( )x ek k xF F= − , where kF is the Fermi wavevector [5-22].  Since the tunnel 

barriers can be regarded as one-dimensional, the perturbation can also be treated in one 

dimension.  By polarizing the charge on the dot, the effect of changing the voltage on the 

gate electrode is to push or pull electrons into and out of the dot.  Therefore, the phase of 

the charge density wave is: φ π π= =2 2
C V

e
Ngd g , where Cgd is the capacitance coupling 

the gate electrode and the quantum dot, and Vg is the voltage on the gate.  By assuming 

that the potential of the tunnel barrier is of the form V x r x( ) ( )= δ , where r is a 

coefficient of reflection from the barrier, and δ( )x is a delta function, the first order 

correction to the ground state energy is: 

δ ρ πE x V x dx rE Nc1 2= =∫ ( ) ( ) cos( )                                     (5) 
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This perturbation theory relies on the fact that the reflection r2, which is related to the 

tunneling barrier conductance as ( )G
e
h

rsc = −
2

1
2

2 , is small. 

 

The above description is given for electrons without spin.  To treat the case of electrons 

with spin in the nearly open regime, Matveev must use higher orders of perturbation 

theory, because the first order correction vanishes with the introduction of unpinned 

fluctuations in the spin channel.  This correction to the ground state energy is given as [5-

8]: 

δ
π

πE br E
r N
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The capacitance correction can then be extracted from the energy according to: C
E

Vg
=

∂
∂

2

2 , 

giving the result: 
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2
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1
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π
π                            (7) 

The above expression is not normalized, and it gives the deviation of the capacitance C 

from 0.  It is necessary to add a constant C0 that is established by setting the integral of 

C(N) equal to one electron.  In the theory, b=2.27.  The logarithmic divergence is 

analogous to a similar behavior of magnetic susceptibility in the two-channel Kondo 

problem [5-19].  To account for a finite temperature, the singularity in equation (7) is cut 

off by replacing r N2cos2π  with r N
k T
U
B2cos2π + .  The corrected expression was used 

for the fits. 

 



 87

In the top plot of Figure 30b, and in Figure 30c and d, we show capacitance peaks 

obtained with tunnel barrier conductances of 1.09, 1.50 and 181 2. e h , respectively.  The 

top plot in Figure 30b is offset by 0.35 for clarity.  These figures also show the 

capacitance calculations of the strong coupling perturbation theory for tunnel barrier 

conductances of Gsc=1.08, 1.41 and 19 2. e h , respectively, which have been obtained by 

fitting to our data by least squares optimization.  There is excellent agreement all along 

the entire curves between our data and these theoretical calculations.  Both the weak and 

strong coupling theories fit well to the capacitance peak in the intermediate coupling 

regime, obtained for G=1.09e2/h.  In Figure 30d, where we show a capacitance peak, 

obtained for a nearly completely transparent tunnel barrier conductance of 181 2. e h , the 

shape of the capacitance is indistinguishable from a sinusoid.   In this regime, it is 

difficult to discern any significant differences between any of the theoretical calculations.  

We found that the coefficient b=1, rather than 2.27, as in the theory, to maintain the 

dependence of the capacitance lineshape on Gsc in this regime.  We do not know the 

reason for this discrepancy. 
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Figure 32.  Capacitance peaks for increased tunnel coupling.  (a) Open circles:  data 
for G=0.67e2/h, solid line: fit to weak coupling theory (wc) with Gwc=0.55e2/h, dotted 
line: Lorentzian with Γ=0.15U, dashed line: derivative of the Fermi function with 
U*=0.43U.    (b) Open circles: data for G=1.09e2/h, solid line: wc fit with Gwc=1.08e2/h, 
dotted line: Lorentzian with Γ=0.32U, dashed line: derivative of the Fermi function 
with U*=0.33U.  Closed circles: data for G=1.09e2/h offset by 0.35 vertically, dash-dot 
line: strong coupling theory (sc) fit with Gsc=1.08e2/h.  (c) Open circles: data for 
G=1.50e2/h, solid line: sc fit with Gsc=1.41e2/h, dotted line: Lorentzian with Γ=0.44U, 
dashed line: derivative of the Fermi function with U*=0.29U.  (d) Open circles: data for 
G=1.81e2/h, solid line: sc fit with Gsc=1.90e2/h, crosses: Lorentzian with Γ=1.0U. 
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By using a least-squares method of fitting the renormalized charging energy and the 

Lorentzian-broadened peaks to our capacitance lineshape data, the greatest discrepancy 

between our data and these approaches is between the centers of the peaks.  We have 

observed that by selecting the parameters to fit these expressions in the peak valleys, the 

greatest discrepancy occurs at the centers of the peaks.  Figure 32 shows the results of 

this different fitting approach.   

 

Surprisingly, the renormalized charging energy approach [5-23] was derived with the 

same starting Hamiltonians as the perturbation theory.  It seems that the authors of these 

calculations arrived at different answers by making different approximations in the 

solution of the problem.  In deriving the renormalized charging energy theory, the author 

assumed that the contribution of the higher energy levels is negligible and concluded that 

the capacitance of the quantum dot can be renormalized.  The perturbation theory 

calculation did not make this approximation and it therefore has more weight at the 

valleys of the peaks, possibly due to higher energy peaks. 

 

The discussion above described lineshapes from a single sample from our measurements.  

We have performed these measurements on five other samples and observed similar 

results.  The broadening of the quantum dot capacitance lineshape with increased 

coupling to the reservoir can be calculated with the perturbation theory methods 

described above.  Figure 33 shows two examples of capacitance peak data obtained from 

another sample for two values of the tunnel barrier conductance.  These peaks correspond 

very well to the calculated capacitance lineshape obtained with the strong coupling 
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theory described above for Gsc=0.99 and 1.37e2/h.  Unfortunately, the point contacts used 

in this sample did not display the quantized conductance steps as in Figure 27, so it is 

difficult to compare the values for Gsc with the expected values for the tunnel barrier 

conductance.  The dependence of the characteristics of the point contacts on the shape of 

the leads defining them is discussed in Appendix B. 
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Figure 33.  Comparison of capacitance peaks obtained on samples other than the one 
described above.  Circles: capacitance measurement data obtained at T=43mK.  Solid 
lines: capacitance peaks calculated with the strong coupling theory described above 
with Gsc =0.99 and 1.37e2/h. 
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Figure 34 shows the dependence of the tunnel barrier conductance of point contact 1 on 

the voltage of the lead defining the contact.  We also plot the conductance values 

obtained from theoretical fits in the weakly and strongly coupled regimes.  These values 

have large fluctuations around the measured tunnel barrier conductance.  These 

fluctuations are a mystery that remains to be solved.  They are seen consistently in all of 

our samples.  Evidently, for a dot with a single point contact, the tunnel barrier 

conductance affecting the lineshape is different from the conductance through the dot 

which does not display comparable fluctuations. 
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Figure 34.  Tunnel barrier conductance of point contact 1 (solid line) vs. tunnel 
barrier lead voltage.  ×: Conductance  values obtained from fits with weak 
coupling theory (wc).  +: Conductance values obtained from fits with strong 
coupling theory (sc). 
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Figure 35 shows an example of a sweep of Vg with large fluctuations in the apparent 

tunnel barrier conductance, even though the tunnel barrier conductance is held fixed 

during the sweep.  We have observed such fluctuation in gate voltage sweeps for 

intermediate values of point contact conductance.  In the very weakly coupled and 

strongly coupled regimes, these fluctuations are absent.  Around values of G=e2/h, the 

values of Gwc or Gsc are correlated over a few adjacent peaks.  A similar effect was 

observed in conductance measurements in dots in the quantum Hall regime [5-24].  

Theorists predict that such fluctuations can arise from quantum interference inside the dot 
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Figure 35.  Scan of Vg showing an example of the fluctuations in the apparent 
value of the tunnel barrier conductance between different peaks. 
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and should therefore be highly sensitive to magnetic field.  This is consistent with results 

from conductance experiments [5-25] [5-26] [5-27].  There are similar theoretical 

predictions for fluctuations in capacitance peaks [5-22].  However, we observed no effect 

of magnetic field for magnetic fluxes through the dot as high as 30 flux quanta.   

 

Figure 36 shows two gate voltage scans obtained at slightly different magnetic fields. The 

difference in flux through the quantum dot between the top and bottom scan is 30 flux 

quanta, and the character of the peak-to-peak fluctuations is not affected.  The signal-to-

noise ratio in this figure is worse because the gain of the SET amplifier is degraded by 

using it in the normal state, rather than in the superconducting state. 
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Figure 36.  Varying the magnetic field through the quantum dot does 
not change the peak-to-peak fluctuations.  The difference in flux 
through the quantum dot between the top and bottom scans is 30 flux 
quanta. 
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5.5 Magnetic field dependence 

All of the capacitance lineshape data presented in the previous section was taken with a 

zero magnetic field through the sample.  At zero field, the aluminum single-electron 

transistor is in the superconducting state and the gain of the device is much larger than in 

the normal state.  Thus, to obtain a higher signal-to-noise ratio in our measurements, we 

performed them at zero magnetic field.  In this regime, electrons in the quantum dot can 

exist in two spin states, and the capacitance lineshapes that we obtained agree very well 

with Matveev's theory derived for a quantum dot system with spin.  To determine 

whether the system behaves differently in state in which the spins of all the electrons are 

aligned parallel to each other, we applied an external magnetic field, hoping to force the 

electrons in the quantum dot in a single spin state.  Figure 37  shows the effect of 

scanning the magnetic flux through the quantum dot on the gate voltage sweeps.  The 

shade of the gray scale image corresponds to the magnitude of the AC signal through the 

SET.  Light regions correspond to a high signal, while dark regions correspond to a small 

signal.  The vertical axis in Figure 37 corresponds to the gate voltage.  The narrow, 

closely spaced horizontal stripes in the plot are the traces of the quantum dot single-

electron peaks, while the wide horizontal bands correspond to the SET envelope.  The 

traces of the quantum dot peaks in Figure 37 are fairly horizontal, except for a dip at a 

magnetic flux density of 4.88T.   
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In measurements on a bulk sample from this heterostructure, it was determined that the 

electron concentration is ne = ×1 1011cm-2 , corresponding to a Landau level filling factor 

of ν=1 at B n
hc
eeν = = = ×1

4414 10. Gauss  in CGS units or Bν=1=4.14T in MKS.  Since the 

electron concentration in the quantum dot is probably different than in a bulk sample, the 

value of Bν=1=4.88T could be considered realistic.  On the other hand, the electron 

concentration in the quantum dot in all likelihood is lower than in the bulk, so the 

expected value of Bν=1 is lower than 4.14T.  We examined the effect of the magnetic field 

over a wider range, and shows an example of the dependence of gate voltage scans. 

 

Figure 37.  Effect of scanning the magnetic flux through the quantum dot on 
the gate voltage sweeps.  The shade of the gray scale image corresponds to the 
magnitude of the AC signal through the SET.  Light regions correspond to a 
high signal, while dark regions correspond to a small signal.  The dip at a 
magnetic flux of 4.88T is probably due to the Landau level filling factor of 
ν=1. 
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Figure 38 shows gate voltage scans over a range of magnetic flux density of 0.5T to 9T.  

Idenifying values of magnetic field corresponding to specific Landau level filling factors 

is rather difficult here for several reasons.  One of the problems with performing gate 

voltage scans over such a wide range of magnetic field values is that the tunnel barrier 

conductance of the point contact coupling the quantum dot to the reservoir varies with 

magnetic field.  For example, for B=9T, the tunnel barrier is quite high, so the 

quantization of charge on the quantum dot is quite strong.  Here, the quantum dot 

capacitance peaks are fairly sharp, providing a good contrast in Figure 38.  For small 

 

Figure 38.  Dependence of gate voltage scans on magnetic flux density over 
a wide range of values.  Light gray-high capacitance signal.  Dark gray -
low capacitance signal. 
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values of magnetic field, the tunnel barriers are low, so the charge on the quantum dot 

becomes smeared.  At magnetic flux density values of around 1T, it is very difficult to 

identify the traces corresponding to the quantum dot capacitance peaks.  The fact that the 

tunnel barrier conductance changes with magnetic field means that the point contact 

voltage should be adjusted at different regions of magnetic field.  Another problem in 

Figure 38 is that there are several charge fluctuation events.  For example, at 5.6T and 

8.7T, there are sharp boundaries in the figure.  Here, there could have possibly been some 

charge traps that changed their state, and caused a discontinuous jump in the charge on 

the quantum dot and the central island of the SET.  There are several such events in 

Figure 38, which make it very difficult to follow the development of a single quantum 

dot peak with magnetic field. 

 

As mentioned before, the expected magnetic flux density at which ν=1 in the quantum 

dot is 4.14T.  Thus, we expect that ν=2 at 2.07T.  Figure 39 shows the gate voltage scans 

from 1.5T to 4.5T.  It is difficult to identify a particular feature due to a change of filling 

factor in the quantum dot. 

 

One of the motivations for performing the quantum dot capacitance measurements in 

magnetic field was to observe the variation of the compressibility of the quantum dot.  

We expected the introduction of magnetic field perpendicular to the plane of the quantum 

would create compressible and incompressible rings inside the dot [5-28].  By changing 

the magnitude of the magnetic field, it is possible to vary the area of these strips.  
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Consequently, the variation of the area of the quantum dot would create a capacitance 

signal through the SET.  Unfortunately, we were not able to observe this effect. 

 

 

Figure 39.  Dependence of gate voltage scans on magnetic 
flux density for small fields. 
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Chapter 6 Negative Screening 

In some of our experiments with lateral quantum dot samples, such as depicted in Figure 

21 of Chapter 5, we have observed some curious behavior for which we have not found a 

clear explanation.  We named this phenomenon "negative screening".  Here, as the name 

suggests, the screening of the AC potential in the system by electrons is opposite from 

what is expected. 

 

Figure 40 shows a schematic of the quantum dot experiment.  A small AC voltage 

excitation is applied to the gate lead.  The current through the SET is measured with a 

lock-in amplifier at the frequency of the excitation.  The magnitude of the SET response 

gate

SET

dotCgs

Cds

Cgd G

 

Figure 40.  Schematic of the quantum dot experiment. 



 100

in the linear regime is proportional to the magnitude of the AC electric field reaching the 

central island of the SET.  The top trace in Figure 41 shows an example of the 

dependence of the AC current through the SET as a function of the DC gate voltage.  In 

this trace, there are periodically spaced peaks, with a average period of about 6.3mV.  

These peaks correspond to electrons tunneling onto the quantum dot.  There is also an 

overall envelope modulation of the signal with a period of about 94mV.  This modulation 

arises from the direct capacitive coupling from the gate to the central island of the SET.   
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Figure 41. Example of negative screening in a lateral quantum dot.  Top: 
regular positive screening observed in all samples.  Offset by +32pA for 
clarity.  Bottom: negative screening observed in the high tunnel barrier 
resistance regime only in a few samples.  Both traces were performed at a 
refrigerator temperature of 0.050K. 
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Under normal operating conditions, the electrons tunnel onto the dot from the grounded 

reservoir through the tunnel barrier, denoted as “G” in Figure 40.  Because the quantum 

dot operates on the Coulomb blockade principle, electrons can tunnel onto the dot only 

around certain values of gate voltage.  These values correspond to the periodically spaced 

peaks in the top plot of Figure 41.  Between these peaks, the dot potential is essentially 

electrically “floating”, because no charge is allowed to flow between it and the reservoir.  

At values of gate voltage where tunneling of electrons onto the quantum dot is permitted, 

the dot potential is equilibrated with the grounded reservoir by the electrons tunneling 

onto the dot.  At these points, the effect of the equilibrating of the potential of the 

quantum dot is similar to the effect of placing a grounded metal sheet between the gate 

and the SET.  Here, the quantum dot is an effective screen of the AC potential and it 

shields most of the AC electric field lines from reaching the SET central island.  By 

shielding the AC field, the screening effect of the quantum dot tends to reduce the SET 

signal to zero.  In fact, in the top trace of Figure 41, there is actually an overshoot of the 

screening of the SET signal past zero.  This “overscreening” is due to the fact that charge 

must flow as discrete electrons, and they make up for not screening between peaks by 

overscreening at the peak centers. 

 

In addition to usual screening behavior described above which appears in all quantum dot 

samples, we have observed “negative screening” in some of the samples.  “Negative 

screening” suggests that the quantum dot screens the AC electric field in an opposite 

manner from what is expected.  Here, rather than decreasing the AC field reaching the 

SET, the electrons tunneling onto the quantum dot increase it, as shown in the bottom 
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trace of Figure 41.   In this trace, the peaks corresponding to electrons tunneling onto the 

quantum dot point in a direction that increases the overall SET signal.  Thus suggests that 

electrons tunnel into and out of the dot 180° out of phase compared to the expected 

response. 
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The character of the “negative screening” effect is entirely different from the usual 

behavior of the quantum dot.  Here, rather than separating the gate from the SET, the 

electrons tunneling onto the dot seem to increase the coupling between the gate and the 

central island.  We have observed this “negative screening” behavior only in a few of the 

quantum dot samples.  These samples display “negative screening” for electrons 

tunneling only through specific point contacts.  In addition, this effect appears for very 

high tunnel barrier resistance values (RT>1GΩ).   
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Figure 42. Phase diagram of the single-electron peaks of the quantum dot.  
Light gray areas:  usual positive screening characteristics.  Dark gray: 
negative screening peaks.  White area: absence of single-electron peaks. 
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Figure 42 shows a phase diagram of the screening characteristics in one of our quantum 

dot samples.  In this figure, the light gray areas correspond to the usual positive screening 

quantum dot peaks displayed in the top trace of Figure 41.  Dark gray areas correspond to 

negative screening peaks as in the bottom trace of Figure 41.  Clearly, the effect of the 

different point contact on the presence of negative screening is not symmetric.  Negative 

screening is only present for electrons tunneling across point contact 2, while there is no 

negative screening peaks for electrons tunneling across point contact 1.  In addition, the 

negative screening peaks appear for a relatively large negative bias of point contact 2.  

For example, if the tunneling across point contact 1 is completely suppressed by biasing 

it at -1.2V relative to the 2DEG, then as the voltage on point contact 2 is varied, the 

following occurs.  For point contact 2 voltage biases more positive than -0.54V, no 

quantum dot single-electron peaks are present.  This happens because the tunnel barrier 

resistance of point contact 2 is lower than 
h
e2

12 92 = . kΩ , and the charge quantization is 

destroyed.  As point contact 2 voltage is made more negative than -0.54V, usual positive 

screening single-electron peaks appear in gate voltage sweeps.  Then, as point contact 2 

voltage is made more negative than -0.62V, the single-electron peaks change their 

orientation, and negative screening appears.  At this value of point contact 2 voltage bias, 

we expect that the tunnel barrier resistance is quite high, on the order of 100GΩ.  For 

values of point contact 2 voltage bias more negative than -0.7V, the quantum dot single-

electron peaks disappear altogether.  Here, the RTCΣ time of charging the quantum dot 

with a single electron is longer than the period of the AC signal.  The  period of the AC 
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signal is 1ms (f=1kHz).  The total capacitance of the quantum dot is: C aFΣ = 340 , which 

leads to a tunnel resistance of about R TT = 3 Ω  at the point of disappearance of the 

quantum dot peaks.   

 

Figure 43 supports the above description.  In Figure 43a, for point contact voltage of 

- 0.57V , the quantum dot single-electron peaks appear in the usual positive screening 

orientation.  Also, at this point contact voltage bias, the quadrature, or the 90° out-of-

phase signal due to the single-electrons tunneling onto the quantum dot is very small, as 

shown in Figure 44a.  Figure 43b shows that for a point contact 2 voltage of -0.63V, the 

usual screening single-electron peaks are being replaced by “negative screening” peaks.  

At this point, the quadrature signal from the quantum dot single electrons is quite high, as 

shown in Figure 44b.  More negative values of point contact 2 voltage bias increase the 

“negative screening” peaks, as shown in Figure 43c, and the quadrature component is 

reduced to zero, as in Figure 44c.   
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Figure 43. The dependence of the quantum dot single-electron peaks 
on the voltage on the lead defining point contact 2.  Each trace 
represents the in-phase output signal of the lock-in amplifier for a 
different point contact 2 voltage.  (a) -0.57V     (b) -0.63V (c) -0. 67V 
(d) -0.69V. 
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Figure 44.  Dependence of the quadrature signal of of the lock-in amplifer 
on the voltage on the lead defining point contact 2. (a) -0.57V (b) -0.63V 
(c) -0.67V (d) -0.69V. 
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Finally, for point contact 2 voltage bias of -0.69V, the “negative screening” peaks begin 

to disappear, as in Figure 43d, and the phase of the signal rotates, as evident by the large 

quadrature signal in Figure 44d. 

 

If one were to completely believe the “negative screening” results that we have described 

above, then it would seem that we have observed something quite extraordinary - the 

tunneling of electron-like particles that have positive charge.  Of course, the prospect of 

such a discovery would be quite exciting, it is quite improbable, so we turned to more 

ordinary physical origins for the explanation of this effect. 

 

It is difficult to completely explain the “negative screening” phenomenon.  Nevertheless, 

there are several clues that may lead to a possible description.  First, we turn to the fact 

that the negative screening peaks only appear for extremely high tunnel barrier 

resistances, on the order of 100GΩ.  This range of resistance is on the scale of possible 

leakage, which raises a certain suspicion.  Also, we have observed “negative screening” 

only in a few of the samples, and only for tunneling through certain point contacts in 

these samples.  This suggests that “negative screening” is a sample-dependent 

phenomenon, rather than some general property of electron tunneling through point 

contact tunnel barriers.  So, even through it is difficult to imagine a scenario, in which 

leakage can produce an effect such as “negative screening”, the above stated facts seem 

to point in this direction. 
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Chapter 7 Conclusion 

In this thesis, we demonstrated that the extremely high charge sensitivity of the single-

electron transistor makes it useful for various charge detection applications.  We have 

described the implementation of an aluminum single-electron transistor (SET) as an 

ultrasensitive detector in charge measurement experiments on semiconductor quantum 

dots.  The double-angle evaporation technique was used to reliably fabricate the 

aluminum SETs on semiconductor samples.  In one of the experiments, the SET was used 

to measure the charge quantization on the quantum dot while varying the strength of the 

coupling between the dot and the leads.  With standard measurement techniques, we were 

able to obtain a sensitivity of 12 10 3. × − e
Hz

 to charge on the quantum dot in that 

experiment.  This charge sensitivity allowed us to perform a careful study of the effect of 

increased coupling strength between the quantum dot and the environment on the 

broadening of the energy levels on the dot, as described in Chapter 5. 

 

In the quantum dot measurements, we found that the level broadening on the quantum dot 

cannot be described by a Lorentzian broadening function [7-7-1] nor by a renormalized 

charging energy [7-2].  Rather, the proper theoretical approach to this problem is through 

calculations based on perturbation theory [7-3][7-4], to which we compared our data. 

 

There are some possible extensions of this thesis for future work: 
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• Spin-polarized state.  During the experiments of sensing charge on the quantum dot, 

one of the motivations for performing measurements in a magnetic field was to 

observe the transition of the system with unfavored spin to one where the spins of all 

the electrons are parallel.  Here, theoretical calculations predict that the lineshape has 

a cosine shape [7-4].  We were not able to observe this spin-polarized state, and it 

would be very interesting to verify the theoretical prediction. 

• Compressibility.  The charge sensitivity of the SET allows one not only to detect 

electrons tunneling on and off the quantum dot, but to detect changes in the shape of 

the dot.  In magnetic field, compressible and incompressible strips develop in the 

quantum dot, because the electron concentration is not uniform across the entire area 

of the dot.  The concentration is maximum at the center, and it falls off to zero at the 

edges of the dot.  As the magnetic field is varied, these strips move, and the metallic, 

or compressible strips change their size and location.  The SET can detect these 

changes and can be used to study the physics of these compressible and 

incompressible strips. 

• Composite fermions.  Theory predicts that at certain large values of magnetic field, 

there are quasi-particles in a 2DEG, called composite fermions, that behave as 

electrons do for a zero magnetic field [7-5].  The composite fermions appear in a 

regime, referred to as the Fractional Quantum Hall regime [7-6].  Composite fermions 

have charge of e/3, where e is the charge of an electron.  It would be interesting to 

perform the charge detection experiment on a quantum dot in the Fractional Quantum 

Hall regime and measure whether the physics of Coulomb blockade takes composite 

fermions into account, or whether it is still based on regular electrons.  This can be 
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observed by determining if the period between the capacitance peaks changes from 

e/Cg to e/3Cg.   

• Charge sensing applications.  The extremely high charge sensitivity of the SET can 

be applied to a wide range of applications.  For example:  a data storage paradigm can 

be conceived where a read head with a SET as the sensor is used to read the data 

stored on a rotating disk.  The information can be stored in the form of small packets 

of charge in elements, such as quantum dots.  Of course, to be useful, the SET must 

be fabricated with dimensions on the order of 1-2nm, so that it operates at room 

temperature. 
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Appendix A Fabrication Recipes 

 Most of the processing steps described below have been performed in the 

Nanostructures Laboratory at MIT, except for the photolithography and the electron-

beam lithography steps. 

1. Cleaning 

 The cleanliness of the substrate is extremely important for the success of the 

subsequent processing steps, so the following procedure is performed on all GaAs 

samples, both after receipt from the grower, and before every major step in the 

process. 

a.  Rinse the samples in deionized (DI) water for 1minute. 

b.  Blow dry with pressurized N2 gun. 

c.  Place the samples in a Teflon basket with holes in the bottom. 

d.  Boil in 1,1,1 Trichloroethane (TCA) for 10 minutes. 

e.  Ultrasonic clean in acetone for 10 minutes.  The Teflon basket prevents the 

brittle GaAs samples from hitting against the walls of the glass beaker during 

the ultrasonic bath. 

f.  Ultrasonic clean in methanol for 10 minutes. 

g.  Quickly blow dry with N2 gun.  If the methanol dries by itself, streaks form on 

the surface of the substrate. 
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h.  The substrate surface should be clean now.  The surface must be covered with 

photoresist or electron-beam resist, depending on the next processing step, as 

soon as possible after drying. 

2. Photolithography 

 After the samples have been cleaned as described above, photoresist is applied to 

the surface to prepare the samples for photolithography.  The initial processing 

steps involve relatively large features (greater than about 5µm), so ordinary 

photolithography techniques will suffice. 

a.  Spin Shipley 1813 photoresist at 4500 RPM for 45 seconds. 

b.  Bake for 30 minutes in a 90°C oven.  The resulting thickness of the 

photoresist film is about 1.1µm. 

c.  The samples must be stored in a lightproof container for transport to the 

building 13 Microlab facility for photo exposure. 

d.  Exposure is performed in a Karl Suss aligner.  The exposure time is generally 

8-15 seconds, but it must be calibrated at the beginning of the day, because 

the power output of the lamp fluctuates quite a lot.  The most difficult part in 

the photolithography procedure is the proper alignment of the pattern.  The 

first layer, the mesa definition, must be as parallel as possible to the 

crystallographic orientation of the wafer.  Each chip contains 9 or 18 mesas.  

After all the photolithography steps, each chip will be cleaved into individual 

mesas for electron-beam lithography, so it is very desirable that the crystal 

axes run parallel to the mesa edges. 
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e.  Develop by spraying with CD-30 developer for 30 seconds.  The pattern 

should start clearing after about 15 seconds.  The exposure should be 

calibrated so that the pattern is properly developed after 30 seconds.  In the 

absence of CD-30 developer, MF319 developer can be used. 

f.  Rinse in DI water for 1 minute. 

 For photoresist patterns for metal evaporation and liftoff, sometimes it is 

beneficial to perform a slightly different development procedure to generate a 

small undercut in the resist profile.  Generally, vertical sidewalls are sufficient for 

liftoff when the evaporation is performed with a point source.  Nevertheless, 

under certain conditions, such as aging photoresist, the profile may be slightly 

overcut, so just as a precaution, we perform the following procedure to create an 

undercut. 

e. Soak in Chlorobenzene for 4 minutes. 

f. Bake the sample for 4 minutes in a 90C oven. 

g. Develop by spraying CD-30 developer for 30 seconds.  Because of the 

Chlorobenzene soak, the exposure time must be increased to about 15-17 

seconds to properly develop the samples in 30 seconds. 

h. Rinse in water for 1 minute. 

3. Mesa definition 

 The main consideration in the definition of the mesas in GaAs samples is that 

most wet etching solutions are anisotropic.  Depending on the crystallographic 

orientation,  the etched edge may have an undercut profile, or the opposite, 
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overcut profile.  We found that the H2SO4 based etching solution gives the best 

results. 

a.  Etch the mesa in H2SO4:H2O2:H2O (1:8:1000) solution.  The etch rate of 

GaAs in this solution is about 43nm/min, but it should be calibrated before 

every important run. 

b.  Rinse in water for about 1 minute to stop the etch. 

c.  Strip the photoresist by soaking in acetone for about 1-2 minutes.  Make sure 

that all the photoresist is gone, especially at the corners of the chip, where it 

builds up after spinning. 

d.  Rinse in methanol for a few seconds.  It is very important that methanol is 

applied immediately to the chip after it is removed from the acetone bath.  If 

the acetone dries before methanol is applied, it leaves residue which is very 

difficult to remove. 

e.  Blow dry with N2. 

f.  Spin and bake photoresist as described above for the next step. 

4. Ohmic contacts 

 The contacts to the Two-Dimensional Electron Gas (2DEG) in the GaAs 

heterostructure are deposited by electron-beam evaporation onto the sample 

surface through a pattern defined in photoresist.  The exposure and development 

are performed using chlorobenzene for liftoff as in the procedure described above.   

 Before being loaded into the evaporator, the following procedure is performed: 

a.  UV ozone clean for 30 seconds. 

b.  Rinse in water for 1 minute. 
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c.  Blow dry with N2. 

d.  Etch in H2SO4:H2O2:H2O (1:8:1000) solution for 15 seconds. 

e.  Blow dry with N2. 

 The metal evaporation is performed at a pressure of approximately 4×10-7 Torr at a 

rate of 0.5 nm/s.  The chamber is cleaned before loading the samples. 

f.  Evaporate: 

 Nickel - 10 nm 

 Germanium - 35 nm 

 Gold - 70 nm 

g.  Liftoff the unwanted metal by soaking in acetone.  This is a rather tricky 

procedure.  The success of liftoff depends on several factors:  the proper 

profile of the resist, the size of the molten area in the source of the evaporator 

(as close to a point source as possible).  The endpoint of liftoff is usually 

determined from the appearance of the surface of the metal.  The surface of a 

properly performed evaporation will become rough a few seconds after being 

placed in acetone.  This indicates that acetone has begun to dissolve the 

photoresist under the metal.  Within a few minutes, depending on the degree 

of undercut, amount of evaporated metal, thickness of the resist, etc., the 

metal surface becomes smooth and shiny again.  At this point, photoresist is 

completely dissolved and the metal has “lifted off” the surface of the wafer. 

h.  Spray with acetone immediately after removing the sample from the acetone 

bath.  Here, as described above, acetone must not be allowed to dry on the 

substrate surface. 
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i.  Spray with methanol.  This is the last chance to remove any loose particles of 

metal from the surface of the substrate.  After the substrate is dry, there is 

virtually no chance of removing metal particles that stuck to the surface.  

Really make sure that the surface is clean. 

j.  Blow dry with N2. 

 After successful liftoff procedure, the ohmic contacts are annealed.  This procedure 

diffuses the metal eutectic into the substrate, creating a contact to the 2DEG that 

has a resistive, rather than a diode-like characteristic. 

k.  Anneal the contacts at 425°C for 0.7min.  The parameters for the Eurotherm 

strip heater that was used for the ohmic contacts are: 

 Pr1: 400 Pr2: 600  Pr3: 100 Pr4: 800 

 Pl1: 200 Pl2: 410  Pl3: 425 Pl4: 0 

 Pd1: 0.5 Pd2: 0  Pd3: 0.7 Pd4: End 

l.  Check the resistance of the ohmic contacts on the probe station. 

m.  Clean the substrates and spin and bake the photoresist as described above. 

5. Gold leads 

 The pattern for this photolithography step contains the smallest features (~5µm) 

of all the photolithography steps, which makes it the most difficult one.  The 

exposure must be well-aligned.  The sample must be pressed very evenly against 

the mask during exposure, which is difficult with large photoresist build-up at the 

corners of the chip.  The exposure must be properly selected not to over- or 

underdevelop the fine features.  The development is performed with 

chlorobenzene, as described above, to ensure good liftoff.  Before being loaded 



 118

into the evaporator, the samples are subjected to a 30 second clean in UV ozone.  

The metal is evaporated in the electron-beam evaporator with 5nm of titanium or 

chrome as the adhesion layer and about 120-150 nm of gold.   

  

 Liftoff is performed in acetone as described above.  To speed up the liftoff 

procedure, the sample can be placed in an ultrasonic bath.  If the acetone does not 

seem to be dissolving the photoresist, the sample can be placed in a boiling 1-

methyl-pyrrolidone (NMP).  Boiling NMP is a rather extreme measure, so great 

care must be taken.  

6. Electron beam resist preparation 

 Now that the substrates have been through all the photolithography steps and 

cleaned, the resist for electron-beam lithography can be applied with the 

following procedure: 

a.  Spin Methacrylic acid (MAA) copolymer 11% in ethyl lactate at 5000 RPM 

for 45 seconds.  The resulting film thickness is about 450nm. 

b.  Bake in an oven at 125°C for 30 minutes. 

c.  Flood expose in the OAI aligner with λ=220nm mirrors for 200 seconds.  The 

power density of the lamp should be about 1mW/cm2.  This step is performed 

to introduce a certain dose to the bottom layer of the resist and increase the 

degree of undercut for the double-angle evaporation, as described in the 

Fabrication chapter. 
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d.  Spin 950K molecular weight poly-methyl-methacrylate (PMMA) dissolved 

2% in Anisole at 5000 RPM for 45 seconds. The resulting film thickness is 

about 50nm. 

7. Electron-beam lithography 

 The electron-beam lithography is performed in a JEOL 6400 scanning-electron 

microscope.  The beam parameters for the lithography are: 

 Accelerating voltage: 40kV.  This is the maximum voltage of the machine.   

 Higher voltage means that the effect of backscattering is smaller. 

 Probe current: 20pA.  Smaller probe current would increase the resolution, but the  

 poor signal-to-noise ratio makes the focusing virtually impossible. 

 Aperture setting: 4.  Smallest aperture is necessary for the small probe current. 

 Working distance: 6mm.  Getting the sample as close as possible to the gun is  

 necessary for good resolution. 

 Magnification: 1000.  All the patterns are written with a magnification of 1000. 

 Obviously, the magnification can and should be changed during the set-up and 

optimization of the beam. 

  

 Before writing, the microscope beam must be properly aligned, focused, corrected 

for astigmatism, etc.  This is performed on a resolution standard, placed in the 

microscope chamber next to the sample on the chip holder.  The resolution 

standard is made of a thin film of gold on a graphite substrate.  The gold consists 

of balls of diameters ranging from 50nm to 100nm and can easily be used for 
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focusing at a magnification of 300,000, the maximum magnification of the 

machine.  The beam alignment is performed in the following procedure: 

  

a.  Slowly ramp the probe current up to about 240µA.  This should take a few 

minutes, so that the filament does not suffer from thermal shock.  If the 

microscope is in line scan mode, the line should increase up to a certain 

maximum value, then decrease, and finally increase and saturate at a probe 

current of approximately 240µA.  This should be performed at a 

magnification less than 1000. 

b.  Align the electron gun.  Maximize the secondary electron signal by shifting 

and tilting the gun in the x and y directions.  The optimum gun position can be 

obtained after several iterations. After the gun is properly aligned, the 

microscope can be switched to TV scan mode. 

c.  At a magnification of about 10,000, focus on the resolution standard.  If that 

proves impossible, it is probably due to extreme astigmatism.  Reduce the 

magnification and try to adjust the x and y astigmatism controls. 

d.  Align the aperture by using the wobbler, which moves the plane of focus up 

and down.  With a properly aligned aperture, the image should defocus 

uniformly in all directions, or “breathe”.  If the image is moving up and down 

or sideways, the aperture needs to be moved in the same direction.  The focus 

may need to be changed afterwards. 

e.  Increase the magnification to 100,000-300,000.  Adjust the astigmatism.  

Improper astigmatism results in an elliptical beam spot.  The effect can be 
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seen by the appearance of diagonal striations in the image if the focus is 

slightly changed.  For severe astigmatism, these striations prevent one from 

resolving the image at large magnifications. 

f.  At this point, the lens should be cleared of any electrically charged particles.  

Here, the electric field of the lens is turned off, and any charged particles are 

pumped away.  If this process results in any change in the image, such as a 

positional shift, change of focus, the aperture and the astigmatism corrections 

need to be repeated and the lens should be cleared again.  This process should 

be repeated several times, until there is no change in the image after clearing 

the lens. 

g.  Now, the beam is properly aligned, and it is ready for writing.  Move a corner 

of the sample into view.  Use the fine height adjustment to bring the surface of 

the sample into the plane of focus.  This should be done at a magnification of 

about 1000 or higher. 

h.  Find the corner of the gold leads and use the line scan mode to quickly focus 

on the edge of the lead at a magnification of about 40,000. 

i.  Find the center of the writing field.  In our mask, we have a gold spot of about 

5µm in diameter for this purpose.  Use the Faraday cup to fine tune the probe 

current to 20pA, if it has changed. 

j.  Use the line scan mode again to do a final focus on the edge of the gold spot. 

k.  Turn the control of the beam over to the computer and write the pattern. 

 After writing, the sample is removed from the microscope chamber.  The pattern 

is developed as following: 
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l.  Soak in a solution of MIBK:IPA 2:3 for 60 seconds.  The developer should be 

continuously swirled for the entire development time. 

m.  Soak in IPA for 30 seconds. 

n.  Blow dry with N2. 

8. SET evaporation 

 The samples are subjected to a 3-4 second oxygen plasma ashing immediately 

before being loaded into the evaporator.  This process eliminates any thin film of residue 

that remains after the development.  It is very important to remove this residue film, 

because it prevents good electrical contact to the lower metal layer.  The evaporation of 

the SET devices is performed in an electron-beam evaporator, at a pressure of about 

4×10-7 Torr. 

a.  Evaporate 30 nm of aluminum at a rate of 0.5 nm/s.  The angle of the sample 

stage is -9°. 

b.  Wait 10 minutes for cooldown. 

c.  Close the High-Vac valve. 

d.  Introduce 50-100mTorr of oxygen into the chamber. 

e.  Oxidize for 10 minutes. 

f.  Pump the oxygen away by opening the High-Vac valve.  Wait until the 

pressure falls into the 10-7 Torr range. 

g.  Evaporate 35 nm of aluminum at a rate of 0.5 nm/s.  The angle of the sample 

stage is +9°. 

h.  Wait 10 minutes for cooldown. 

i.  Remove the sample from the evaporator. 
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 Now that the sample holds single-electron transistors, handling of the sample must be 

very careful, because these devices are very susceptible to damage from static discharge.  

Liftoff is performed by soaking in acetone.  Since the profile of the pattern in the resist 

has a large undercut, liftoff is very quick and easy.  Spray with methanol while the 

sample is still wet with acetone and blow dry with N2.  The sample should be placed in a 

static protective container. 

9. Bonding 

The static-sensitive SETs are protected from the moment when they are evaporated by a 

gold wire that shorts all the bonding pads in the gold leads optical layer.  As the sample is 

mounted on the cryogenic probe, these shorting wires must be scratched with a scriber.  

Since the SETs must be protected at all times, these shorting wires are scratched only 

after other shorting wires are bonded between the bonding pads.  When the header with 

the sample is mounted on the cryogenic probe, the shorting wires that have been bonded 

on can be easily removed with tweezers.  The cryogenic probe has a breakout box with 

switches that keep the sample grounded when it is not connected to measurement 

equipment. 
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Appendix B Point Contacts 

During the development of the experiment described in Chapter 5, we have measured 

many different samples.  One of the structures that we used is depicted in the micrograph 

in Figure B45.  This micrograph shows a structure nearly identical to the one pictured in 

Figure 21 in Chapter 5 with one major difference.   

 

Figure B45. Micrograph of a lateral quantum dot sample with double quantum 
point contacts. 
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The technique of double-angle evaporation described in Chapter 2 results in a shadow 

effect, or a "doubling" of features oriented parallel to the tilting axis of the sample.  This 

"doubling" is clear in the leads defining the point contacts in Figure B45.  It turns out that 

the characteristics of the point contacts defined in this manner are significantly affected 

by the shape of the leads.  Properly defined point contacts create electrostatic potentials 

in the 2DEG that meet in a small point.  In other words, the electrons tunneling across the 

point contact from one section of the 2DEG to another must do so only at one particular 

point in the sample, and the tunneling distance must also be very small.  The point 

contacts in the sample shown in Figure B45 constrict the electron tunneling to a very 
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Figure B46. Conductance through point contacts defined as shown in Figure B45. 
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narrow region, but the distance across which the electrons must tunnel is too long 

because of the lead "doubling" caused by the double-angle evaporation.  An example of 

the conductance of such point contacts is shown in Figure B46.  Here, the familiar steps 

of 2e2/h, due to individual conductance channels are missing: the tunnel barrier 

conductance falls off fairly smoothly with voltage on the lead.   

 

In the experiments on quantum fluctuations described in Chapter 5, we measured the 

changes in the capacitance lineshape of the quantum dot as we changed the tunnel barrier 

conductance.  In comparing the resulting lineshapes to theoretical calculations, we used 

values for the tunnel barrier conductance that we extrapolated from the observation of the 

shifts in the conductance plateaus of the point contact for a completely open quantum dot.  

Clearly, a point contact without these conductance plateaus makes this comparison to the 

theoretical calculations very difficult.  To solve this problem, we shifted the leads 

defining the point contacts to account for the "doubling" created by the double-angle 

evaporation method and created true point contacts, depicted in Figure 21 of Chapter 5. 
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Appendix C MATLAB program for SET 

current-voltage characteristics simulation 

%  iv.m  
%        This Matlab program calculates the current through an SET as a function of 
%  source- drain voltage, V, for a given gate voltage, Vg.  This program is called 
% from Matlab by changing to the directory of the program and typing 'iv' at the 
% Matlab command prompt.  The gate Voltage, Vg, is defined in the Matlab 
% environment before calling the program.  The first few lines of the program  
% define the operating temperature (in K), and both capacitances and resistances of 
% the SET.  These parameters can be changed by simply editing the file and saving 
% it.  The capacitances are defined in Farads, and resistances in ohms.  This  
% program outputs a plot which is generated by the command 'plot(V,I)'.  Both 
% V and I are vectors.  The current is calculated from the tunneling rate equations 
% as in [C-1]. 
k=1.38e-23;    % Boltzmann's constant 
T=.05;     % Temperature in Kelvin 
e=1.602e-19;    % Charge of an electron in Coulombs 
C1=80e-18;    % Capacitance of tunnel junction 1 in farads 
C2=80e-18;    % Capacitance of tunnel junction 2 in farads 
Cg=40e-18;    % Gate capacitance in farads 
Csum=C1+C2+Cg;   % Total capacitance of the central island 
Ec=(e^2)/(2*Csum);   % Charging energy 
R1=0.475e6;    % Resistance of tunnel junction 1 in ohms 
R2=0.475e6;    % Resistance of tunnel junction 2 in ohms  
V=[-1000:1000];   % Vector for the source-drain voltage 
V=V*2e-6;    % V goes from -2mV to +2mV 
V=V+eps;    % Avoid dividing by zero 
N=[-8:8]; 
n=length(N); 
Nt=N'*ones(size(V)); 
Vt=ones(size(N))'*V; 
V1=(Vt*(C2/Csum))-(Nt*e/Csum)+(Vg*(Cg/Csum)); 
V2=(Vt*(C1+Cg)/Csum)+(Nt*e/Csum)-(Vg*(Cg/Csum)); 
p1=1/(e^2*R1); 
p2=1/(e^2*R2); 
DEr1=(V1*e)-Ec; 
DEl1=(-V1*e)-Ec; 
DEr2=(V2*e)-Ec; 
DEl2=(-V2*e)-Ec; 
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r1=p1*DEr1./(1-exp(-DEr1/(k*T))); 
l1=p1*DEl1./(1-exp(-DEl1/(k*T))); 
l2=p2*DEl2./(1-exp(-DEl2/(k*T))); 
r2=p2*DEr2./(1-exp(-DEr2/(k*T))); 
x=r1+l2; 
y=l1+r2; 
prodxl=x; 
prodyu=y; 
prodxl(1,:)=ones(size(V)); 
prodyu(n,:)=ones(size(V)); 
for i=1:n-1, 
 prodxl(i+1,:)=prodxl(i,:).*x(i,:); 
 prodyu(n-i,:)=prodyu(n-i+1,:).*y(n-i+1,:); 
end 
ro=prodxl.*prodyu; 
sro=sum(ro); 
for i=1:length(V), 
 ro(:,i)=ro(:,i)/sro(i); 
end 
I=-e*sum((l2-r2).*ro);    % Total current through the SET 
plot(V,I,'w') 
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